Data Scientist

Faculty
London
3 months ago
Create job alert
About Faculty

At Faculty, we transform organisational performance through safe, impactful and human-centric AI.


With more than a decade of experience, we provide over 350 global customers with software, bespoke AI consultancy, and Fellows from our award winning Fellowship programme.


Our expert team brings together leaders from across government, academia and global tech giants to solve the biggest challenges in applied AI.


Should you join us, you’ll have the chance to work with, and learn from, some of the brilliant minds who are bringing Frontier AI to the frontlines of the world.


We operate a hybrid way of working, meaning that you\'ll split your time across client location, Faculty\'s Old Street office and working from home depending on the needs of the project. For this role, you can expect to be client-side for up-to three days per week at times and working either from home or our Old street office for the rest of your time.
What you\'ll be doing:

As a Data Scientist in our Defence business unit you will be part of project teams that deliver bespoke algorithms to our clients across the Defence sector. You will be responsible for conceiving the data science approach, for designing the associated software architecture, and for ensuring that best practices are followed throughout.


You will help our excellent commercial team build strong relationships with clients, shaping the direction of both current and future projects. Particularly in the initial stages of commercial engagements, you will guide the process of defining the scope of projects to come with an emphasis on technical feasibility. We consider this work as fundamental towards ensuring that Faculty can continue to deliver high-quality software within the allocated timeframes.


Faculty has earned wide recognition as a leader in practical data science. You will actively contribute to the growth of this reputation by delivering courses to high-value clients, by talking at major conferences, by participating in external roundtables, or by contributing to large-scale open-source projects. You will also have the opportunity to teach on the fellowship about topics that range from basic statistics to reinforcement learning, and to mentor the fellows through their 6-week project.


Thanks to Faculty platform, you will have access to powerful computational resources, and you will enjoy the comforts of fast configuration, secure collaboration and easy deployment. Because your work in data science will inform the development of our AI products, you will often collaborate with software engineers and designers from our dedicated product team.


Who we\'re looking for:

  • Proven experience in either a professional data science position or a quantitative academic field
  • Strong programming skills as evidenced by earlier work in data science or software engineering. Although your programming language of choice (e.g. R, MATLAB or C) is not important, we require the ability to become a fluent Python programmer in a short timeframe
  • An excellent command of the basic libraries for data science (e.g. NumPy, Pandas, Scikit-Learn) and familiarity with a deep-learning framework (e.g. TensorFlow, PyTorch, Caffe)
  • A high level of mathematical competence and proficiency in statistics
  • A solid grasp of essentially all of the standard data science techniques, for example, supervised/unsupervised machine learning, model cross validation, Bayesian inference, time-series analysis, simple NLP, effective SQL database querying, or using/writing simple APIs for models. We regard the ability to develop new algorithms when an innovative solution is needed as a fundamental skill
  • An appreciation for the scientific method as applied to the commercial world; a talent for converting business problems into a mathematical framework; resourcefulness in overcoming difficulties through creativity and commitment; a rigorous mindset in evaluating the performance and impact of models upon deployment
  • Some commercial experience, particularly if this involved client-facing work or project management; eagerness to work alongside our clients; business awareness and an ability to gauge the commercial value of projects; outstanding written and verbal communication skills; persuasiveness when presenting to a large or important audience
  • Experience leading a team of data scientists (to deliver innovative work according to a strict timeline) as well as experience in composing a project plan, in assessing its technical feasibility, and in estimating the time to delivery

What we can offer you:

The Faculty team is diverse and distinctive, and we all come from different personal, professional and organisational backgrounds. We all have one thing in common: we are driven by a deep intellectual curiosity that powers us forward each day.


Faculty is the professional challenge of a lifetime. You’ll be surrounded by an impressive group of brilliant minds working to achieve our collective goals.


Our consultants, product developers, business development specialists, operations professionals and more all bring something unique to Faculty, and you’ll learn something new from everyone you meet.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Measurement Specialist

Data Scientist - Imaging - Remote - Outside IR35

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.