Data Scientist

Avance Consulting
Wokingham
3 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Remote

Data Scientist/Statistician

Data Scientist (eDV clearance required)

Role description:

We are seeking a skilled and experienced Data Scientist with expertise in time series-based predictive

analysis and strong proficiency in Python & MLOps.

As a Data Scientist, you will be responsible for analysing large datasets, building predictive models, and extracting meaningful insights to drive informed decision- making.

Your focus will be on time series data, leveraging statistical modelling and machine learning techniques to forecast future trends and patterns.

Key responsibilities:

Specific responsibilities include (but not limited to):

 Analyse and pre-process large-scale time series datasets, identifying relevant variables and data cleansing requirements.

 Develop and implement advanced statistical models and machine learning algorithms to perform

predictive analysis on time series data.

 Build and validate forecasting models to predict future trends, patterns, and anomalies in time series data.

 Collaborate with cross-functional teams to understand business requirements and translate them

into actionable data science projects.

 Communicate findings and insights effectively to stakeholders, presenting complex concepts in a

clear and concise manner.

 Stay up to date with the latest advancements in time series analysis, statistical modelling, and

machine learning techniques.

 Collaborate with data engineers to optimize data pipelines and ensure efficient data processing for time series analysis.

 Contribute to the development and improvement of data science methodologies, tools, and frameworks.

Key skills/knowledge/experience:

 The candidate should also have a strong understanding of

 Proven experience in time series analysis and forecasting, preferably in a commercial or industrial setting.

 Strong proficiency in Python, including libraries such as Pandas, NumPy, and scikit-learn for data

manipulation and modelling.

 Solid understanding of statistical modelling techniques for time series analysis, such as ARIMA, SARIMA, or Prophet.

 Experience with machine learning algorithms for time series, such as LSTM, GRU, or XGBoost.

 Proficient in data visualization techniques to effectively communicate insights from time

series data.

 Strong problem-solving skills and ability to handle complex and unstructured data.

 Must be proficient in Agile methodologies, Excellent communication, and collaboration skills with the ability to collaborate effectively in fast-paced, cross- functional teams to deliver data- driven solutions iterative

 Familiarity with SQL and experience in working with relational databases.

 Knowledge of data pre-processing techniques, feature engineering, and model evaluation metrics.

Preferred

o Experience with cloud platforms and distributed computing frameworks, such as AWS, Azure, or Google Cloud.

o Familiarity with big data technologies, such as Apache Spark or Hadoop.

o Knowledge of time series forecasting libraries, such as stats models, ARIMA, XGboost, fbprophet, or TensorFlow.

o Understanding of software development practices and version control systems, such as Git

o Experience with GB energy industry

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.