Data Scientist

Avance Consulting
Wokingham
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist (Government)

Data Scientist - Measurement Specialist

Data Scientist (Predictive Modelling) – NHS

Role description:

We are seeking a skilled and experienced Data Scientist with expertise in time series-based predictive

analysis and strong proficiency in Python & MLOps.

As a Data Scientist, you will be responsible for analysing large datasets, building predictive models, and extracting meaningful insights to drive informed decision- making.

Your focus will be on time series data, leveraging statistical modelling and machine learning techniques to forecast future trends and patterns.

Key responsibilities:

Specific responsibilities include (but not limited to):

 Analyse and pre-process large-scale time series datasets, identifying relevant variables and data cleansing requirements.

 Develop and implement advanced statistical models and machine learning algorithms to perform

predictive analysis on time series data.

 Build and validate forecasting models to predict future trends, patterns, and anomalies in time series data.

 Collaborate with cross-functional teams to understand business requirements and translate them

into actionable data science projects.

 Communicate findings and insights effectively to stakeholders, presenting complex concepts in a

clear and concise manner.

 Stay up to date with the latest advancements in time series analysis, statistical modelling, and

machine learning techniques.

 Collaborate with data engineers to optimize data pipelines and ensure efficient data processing for time series analysis.

 Contribute to the development and improvement of data science methodologies, tools, and frameworks.

Key skills/knowledge/experience:

 The candidate should also have a strong understanding of

 Proven experience in time series analysis and forecasting, preferably in a commercial or industrial setting.

 Strong proficiency in Python, including libraries such as Pandas, NumPy, and scikit-learn for data

manipulation and modelling.

 Solid understanding of statistical modelling techniques for time series analysis, such as ARIMA, SARIMA, or Prophet.

 Experience with machine learning algorithms for time series, such as LSTM, GRU, or XGBoost.

 Proficient in data visualization techniques to effectively communicate insights from time

series data.

 Strong problem-solving skills and ability to handle complex and unstructured data.

 Must be proficient in Agile methodologies, Excellent communication, and collaboration skills with the ability to collaborate effectively in fast-paced, cross- functional teams to deliver data- driven solutions iterative

 Familiarity with SQL and experience in working with relational databases.

 Knowledge of data pre-processing techniques, feature engineering, and model evaluation metrics.

Preferred

o Experience with cloud platforms and distributed computing frameworks, such as AWS, Azure, or Google Cloud.

o Familiarity with big data technologies, such as Apache Spark or Hadoop.

o Knowledge of time series forecasting libraries, such as stats models, ARIMA, XGboost, fbprophet, or TensorFlow.

o Understanding of software development practices and version control systems, such as Git

o Experience with GB energy industry

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.