Data Scientist

Hedera Hashgraph
London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Who we are

The DLT Science Foundation is a not-for-profit organisation with a highly specialised and talented team focused on developing the blockchain/DLT ecosystem, finding product-market fit and bringing industry, academia and regulators together. If you are looking to join a fast-paced environment focused on problem-solving at the frontiers of knowledge in emerging digital technologies, blockchain infrastructure, decentralised applications and distributed systems, read on.

Role and responsibilities

The DLT Science Foundation (DSF) is looking fordata scientistwho can:

  • Gather, review and summarise academic literature related to the research topic of interest
  • Develop methodologies for creating scientific measures across the cryptocurrency and blockchain ecosystem
  • Collect and process data and information related to the research topic of interest
  • Write blog posts on research studies conducted by members from the Foundation
  • Perform peer review and draft reviewer’s report
  • Participate in research seminars
  • Participate in research projects focusing on quantitative indicators among cryptocurrency communities and other DLT related subjects
  • Develop ML/NLP methods to be used to extract and process information in the context of DLT
  • Develop code, tools, and methodologies with regards to the cryptocurrency related projects
Skill requirements

The ideal candidates are expected to have the following qualities:

  • Prior research and development experience
  • Programming skills (Python, SQL)
  • Database management experience
  • Good comprehension and abstraction skills
  • Grit and persistence
  • Reliability
  • Independence
  • Knowledge of statistics, time series analysis, and network theory is beneficial
  • Genuine interest in research on DLT and experience working with Big Data
  • Experience with AWS (desirable)

The position is suitable for candidates looking to get more experience in the field of research and development of innovative methods in DLT. The ideal candidate is characterised by a strong knowledge of and passion for the blockchain industry.


Location: London, England / Hybrid

To apply send your CV to .

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.