Data Scientist

Synergetic
London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - London

Data Scientist | London | AI-Powered SaaS Company

Full Stack Data Scientist - AI & Knowledge Systems

3-6 month contract

Outside IR35

Hybrid (2-3 days per week in London)


About the Role

We are seeking an exceptional Full Stack Data Scientist to join our clients innovation team. This role combines traditional data science expertise with software engineering capabilities to build end-to-end AI solutions. The ideal candidate will have a strong foundation in both developing sophisticated machine learning models and implementing them within production systems. You will work closely with cross-functional teams to transform concepts into scalable AI-powered products.


Candidates should be adaptable and able to thrive in fast paced environments. Being ok with ambiguity and strong communications skills are must.


Responsibilities

  • Design, develop, and implement advanced machine learning models and AI capabilities
  • Build and maintain knowledge graphs and causal inference systems
  • Create probabilistic models to address complex business problems
  • Scale AI solutions from proof-of-concept to MVP and full production
  • Collaborate with backend engineers on data pipelines and infrastructure
  • Work within solution architecture frameworks to ensure AI integration
  • Contribute to solution design and technical decision-making
  • Translate business requirements into technical specifications


Required Skills & Experience

  • Extensive experience combining data science with software engineering
  • Strong expertise in machine learning, with focus on causal ML and probabilistic modelling
  • Experience developing and implementing knowledge graphs
  • Proficiency in scaling AI solutions from concept to production
  • Working knowledge of backend systems, data pipelines, and ETL processes
  • Familiarity with cloud platforms, particularly Microsoft Azure
  • Understanding of microservices architecture and distributed systems
  • Experience with DevOps practices for AI/ML workflows (MLOps)
  • Strong programming skills in Python and related data science libraries
  • Demonstrated ability to work within solution architecture frameworks


Other preferred skills

  • Experience with multiple cloud providers beyond Azure
  • Familiarity with container orchestration (Kubernetes)
  • Knowledge of graph databases and query languages
  • Experience with deep learning frameworks
  • Background in NLP, computer vision, or reinforcement learning
  • Domain expertise across industries but familiar with Financial Services, Healthcare and Lifesciences, Industrials and Telecommunications and infrastructure would be a plus

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.