Data Science Manager - Insurance (Propensity models)

Adecco
Bromley
10 months ago
Applications closed

Related Jobs

View all jobs

Data science programme lead

Data science programme lead

Data Analyst (Cars Data Science & Analytics) - Manchester, UK

Lead Data Scientist

Data Scientist - Optimisation

Machine Learning Engineer

Data Science Manager (Insurance, Propensity Models, Python) £90,000 - £120,000 plus excellent benefits including a 14% bonus and 10% pensionLocation: Bromley, Kent 2 days in the office Contract Type: PermanentAre you a talented Data Science professional looking to take your career to the next level? A leading financial institution in the insurance sector is seeking a dynamic Data Science Manager to join their Actuarial team. If you're passionate about leveraging data science to drive business strategy and have a strong background in propensity models, we want to hear from you!About the Role:In this exciting brand new role, you'll be at the forefront of building and implementing innovative data science solutions that align with our client's strategic goals. You'll have previous experience of strong Stakeholder engagement and collaborate closely with various stakeholders across the globe, including Business Solutions, Distribution Channels, Marketing, and Actuarial teams. This opportunity is perfect for someone with a quantitative background looking to enhance their commercial experience within the life insurance sector.Key Responsibilities:Identify growth opportunities and optimise in-force processes using data science.Conduct investigations utilising data science applications and present insights to stakeholders.Lead the training and development of Machine Learning models, including propensity models.Integrate...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.