Data Science Manager - Insurance (Propensity models)

Adecco
Bromley
9 months ago
Applications closed

Related Jobs

View all jobs

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

Gen AI & Data Science Manager — Lead AI-Driven Innovation

AI & Data Science Leader: Gen AI & Analytics

Data Science Manager (Insurance, Propensity Models, Python) £90,000 - £120,000 plus excellent benefits including a 14% bonus and 10% pensionLocation: Bromley, Kent 2 days in the office Contract Type: PermanentAre you a talented Data Science professional looking to take your career to the next level? A leading financial institution in the insurance sector is seeking a dynamic Data Science Manager to join their Actuarial team. If you're passionate about leveraging data science to drive business strategy and have a strong background in propensity models, we want to hear from you!About the Role:In this exciting brand new role, you'll be at the forefront of building and implementing innovative data science solutions that align with our client's strategic goals. You'll have previous experience of strong Stakeholder engagement and collaborate closely with various stakeholders across the globe, including Business Solutions, Distribution Channels, Marketing, and Actuarial teams. This opportunity is perfect for someone with a quantitative background looking to enhance their commercial experience within the life insurance sector.Key Responsibilities:Identify growth opportunities and optimise in-force processes using data science.Conduct investigations utilising data science applications and present insights to stakeholders.Lead the training and development of Machine Learning models, including propensity models.Integrate...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.