Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Science Manager – Experimentation: Innovation & Research

Sony Playstation
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Science Manager – Experimentation: Innovation & Research United Kingdom, London

Data Science Manager

Senior Machine Learning Scientist

Staff Machine Learning Scientist

Staff Machine Learning Scientist

Staff Data Scientist – Experimentation: Innovation & Research United Kingdom, London

Why PlayStation?

PlayStation isn’t just the Best Place to Play — it’s also the Best Place to Work. Today, we’re recognized as a global leader in entertainment producing The PlayStation family of products and services including PlayStation5, PlayStation4, PlayStationVR, PlayStationPlus, acclaimed PlayStation software titles from PlayStation Studios, and more.

PlayStation also strives to create an inclusive environment that empowers employees and embraces diversity. We welcome and encourage everyone who has a passion and curiosity for innovation, technology, and play to explore our open positions and join our growing global team.

The PlayStation brand falls under Sony Interactive Entertainment, a wholly-owned subsidiary of Sony Group Corporation.

As a Data Science Manager, you will lead both people and innovation in experimentation and causal inference, helping shape the future of decision-making and product innovation at SIE. This is a hands-on leadership role blending technical depth with managerial responsibilities. You will drive cutting-edge research in experimentation methodologies while mentoring and guiding a team of data scientists. You’ll be responsible for elevating our experimentation strategy, fostering a culture of curiosity and rigor, and helping cross-functional teams deliver player-first experiences through strong evidence-based decisions.

What You’ll Be Doing:

  • Lead a team of data scientists focused on experimentation and causal inference; provide technical direction, career development, and mentorship.
  • Drive innovation in experimentation research by developing and overseeing new methodologies and frameworks that improve the quality, speed, and scalability of experiments.
  • Guide the advancement of experimentation infrastructure and tooling, incorporating statistical and machine learning methods to refine analysis capabilities.
  • Partner with product managers, game studios, and business leaders to identify high-impact experimentation opportunities and ensure alignment with PlayStation’s strategic goals.
  • Act as a thought leader in experimentation and causal inference, evangelizing best practices and fostering learning across teams.
  • Contribute directly to research and prototyping of novel experimentation techniques that address complex real-world constraints, such as user behavior variability and data limitations.
  • Champion the growth of a data-driven culture by advocating for experimentation standards, ethical practices, and reproducibility.
  • Represent the team’s insights, innovations, and impact across the broader data science and product communities within PlayStation.
  • Stay abreast of emerging developments in experimentation, causal inference, and applied machine learning to continuously evolve our capabilities.

What We’re Looking For:

  • Master’s Degree or equivalent experience in Applied Math, Economics, Statistics, Computer Science, or related field. Ph.D. or equivalent experience preferred.
  • Strong familiarity with the gaming industry and contemporary gaming experiences.
  • 6+ years of experience in data science, including hands-on work in experimentation, with at least 2+ years in a formal people management or technical leadership role.
  • Proven track record of leading experimentation innovation and scaling frameworks within a dynamic business environment.
  • Proficiency in SQL and statistical programming languages (e.g., R or Python), especially for causal inference, experimental analysis, and scalable modeling.
  • Expertise in causal inference techniques and designing both randomized and quasi-experiments.
  • Demonstrated ability to collaborate cross-functionally and influence data strategies that inform business and product decisions.
  • Excellent communication and storytelling skills, especially in conveying complex concepts to non-technical stakeholders.
  • Experience working with modern data engineering and visualization tools (e.g., Airflow, Git, Tableau, MicroStrategy).
  • A strong sense of ownership and an inclusive leadership style that encourages collaboration and innovation.

Equal Opportunity Statement:

Sony is an Equal Opportunity Employer. All persons will receive consideration for employment without regard to gender (including gender identity, gender expression and gender reassignment), race (including colour, nationality, ethnic or national origin), religion or belief, marital or civil partnership status, disability, age, sexual orientation, pregnancy, maternity or parental status, trade union membership or membership in any other legally protected category.

We strive to create an inclusive environment, empower employees and embrace diversity. We encourage everyone to respond.

PlayStation is a Fair Chance employer and qualified applicants with arrest and conviction records will be considered for employment.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.