Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Science and Machine Learning Manager

Campion Pickworth
London
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist/AI Engineer (Remote)

Senior Data Scientist/Ai Engineer (Remote)

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Director, International MROI Data Science Lead

Lead Data Scientist

Are you a focused, aspirational, and collaborative data science professional looking to take the next step in your career?


Campion Pickworth are working with a leading International professional services firm to recruit for Data Science and Machine Learning Assistant Manager to support the delivery of innovative analytics and machine learning solutions in a fast-paced, supportive environment.


This is a unique opportunity to work on a wide range of high-impact data science projects, leveraging cutting-edge technologies and working alongside a talented team of professionals. You’ll play a key role in shaping our data capabilities and delivering meaningful insights that support business-critical decisions.


What You’ll Do

  • Lead the development and deployment of advanced analytics, data science, and machine learning tools and solutions.
  • Use technologies such asPython, R, Azure, Databricks, SQL, Power BI, and Tableauto deliver actionable insights from complex data.
  • Guide and mentor junior data scientists and analysts, fostering a culture of growth and technical excellence.
  • Collaborate with cross-functional teams to identify business needs and translate them into scalable data science solutions.
  • Manage multiple projects from inception to deployment within cloud-based environments.
  • Maintain high standards in code review, documentation, and delivery in a DevOps context.
  • Apply a deep understanding of ML techniques, from supervised/unsupervised learning to generative AI and large language models.

What We’re Looking For


Essential Skills and Experience:

  • Proven ability to solve complex, real-world problems through data science and analytics.
  • Experience coaching and reviewing work of junior team members.
  • Strong Python skills (pandas, numpy, scikit-learn) and a solid grounding in probability and statistics.
  • Deep knowledge of machine learning methods and their practical application.
  • Experience managing multiple end-to-end data science projects across varied data types.
  • Familiarity with DevOps practices and tools like Git.
  • Cloud experience (e.g. Azure, AWS) and working with ML platforms and services.
  • Strong communication skills, capable of explaining complex topics to non-technical stakeholders.
  • Ability to align data science efforts with broader business objectives.

Desirable Skills:

  • Experience using R and NLP or deep learning techniques (e.g. TF-IDF, word embeddings, CNNs, RNNs).
  • Familiarity with Generative AI and prompt engineering.
  • Experience with Azure Databricks, MLflow, Azure ML services, Docker, Kubernetes.
  • Exposure to Agile development environments and software engineering best practices.
  • Experience working in large or complex organisations or regulated industries.
  • Strong working knowledge of Excel, SQL, Power BI, and Tableau.


Why Join?

  • Work in a fast-growth, innovation-driven environment.
  • Be part of a diverse and inclusive team where your contributions are valued.
  • Tackle meaningful challenges with real-world impact.
  • Access continuous professional development and technical learning opportunities.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.