Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Platform Lead Engineer (Platform Essentials and AI enablement)

Mars Petcare UK
Greater London
8 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer - 8 Month FTC (London)

Lead Data Engineer

Engineering Lead - Data Engineering - Schroders

Lead Data Engineer

Lead Data Engineer

Data Engineering Lead

Job Description:

We are seeking an experienced Lead Data Platform Engineer to join our team and take on a crucial role in managing a group of talented engineers. As the Lead Data Platform Engineer, you will be responsible for overseeing data platform engineering and core toolsets, with a focus on Azure infrastructure as code. You will ensure the reliability, scalability, and performance of our data infrastructure while playing a pivotal part in shaping our data ecosystem and driving innovation within our organisation.This is an exciting opportunity for a seasoned data engineer or advanced analytics engineer to step into a leadership role, shape our data infrastructure, and drive innovation in a dynamic and collaborative environment. If you are a passionate data engineer with strong leadership skills and expertise in Azure, we encourage you to apply and be a part of our dedicated global team of talented professionals and make a real impact on our Petcare data and analytics platform and make a better world for pets.What are we looking for?

  • Bachelor’s or Master’s degree in Computer Science, Information Technology, or a related field or equivalent experience.
  • Experience in leading technical engineering teams and delivering and owning objectives.
  • Proven experience in data platform engineering, including the design, development, and optimisation of data infrastructure.
  • Strong leadership and management skills, with the ability to lead and mentor a team of engineers effectively.
  • Proficiency in programming languages such as Python, Java, or Scala.
  • Expertise in Azure cloud services and infrastructure as code (e.g., Azure Resource Manager templates, Terraform).
  • Strong understanding of data platform KPIs and accountability for delivering measurable outcomes.
  • Experience working in a product-based approach within specific technical domains and as part of a wider team.

Nice-to-Haves:

  • Knowledge of the Inner Source paradigm and way of working.
  • Experience with containerisation and orchestration technologies (e.g., Docker, Kubernetes).
  • AI platform experience (enabling models and deployment)
  • Knowledge of cloud technologies and virtual networking.
  • Familiarity with other cloud platforms (AWS, Google Cloud).

Key Responsibilities:Strategic Leadership:

  • Define and own the data platform strategy and roadmap for the technical domains, aligned with the overall Petcare data and analytics platform strategy and Petcare strategy.
  • Ensure inner sourcing of platform capabilities across all divisions and regions, fostering reuse and collaboration.
  • Track and optimise the work done by the platform engineers within your domain.

Platform Delivery & Evolution (within your domain):

  • Lead the delivery of platform capabilities, ensuring scalability, performance, and security. Being “hands on” as needed.
  • Drive the yearly plans for the domain, ensuring alignment with the wider Petcare strategic goals.
  • Collaborate with the Engineering Director and other domain leads, and architects to maintain alignment and productivity.

Stakeholder Management:

  • Along with other senior members of the team partner with D&A Leaders, engineering leads, analytics product leads, and data science leads across all divisions and regions to ensure platform capabilities meet the needs of Petcare globally.
  • Collaborate across a complex and occasionally ambiguous Digital Technology organisation structure, using influence to achieve alignment and strategic outcomes.
  • Act as the key point of contact for the domain’s platform KPIs, ensuring alignment on cost management, innovation, risk reduction, and value enablement at scale, while reporting progress and outcomes to senior leadership up to the CDO.

Governance & Accountability:

  • Establish strong governance processes to ensure alignment of platform capabilities across divisions

What can you expect from Mars?

  • Work with over 130,000 diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.