Data Platform Lead Engineer (Platform Essentials and AI enablement)

Mars Petcare UK
Greater London
11 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer – Azure Platform Lead (Hybrid, Bristol)

Azure Data Platform Lead - Principal Data Engineer

Senior Data Engineer - Hybrid Data Platform Lead

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Senior Data Engineer - Lead Data Platform & Growth

Data Engineer — Cloud Platform Lead (Hybrid,Car Allowance)

Job Description:

We are seeking an experienced Lead Data Platform Engineer to join our team and take on a crucial role in managing a group of talented engineers. As the Lead Data Platform Engineer, you will be responsible for overseeing data platform engineering and core toolsets, with a focus on Azure infrastructure as code. You will ensure the reliability, scalability, and performance of our data infrastructure while playing a pivotal part in shaping our data ecosystem and driving innovation within our organisation.This is an exciting opportunity for a seasoned data engineer or advanced analytics engineer to step into a leadership role, shape our data infrastructure, and drive innovation in a dynamic and collaborative environment. If you are a passionate data engineer with strong leadership skills and expertise in Azure, we encourage you to apply and be a part of our dedicated global team of talented professionals and make a real impact on our Petcare data and analytics platform and make a better world for pets.What are we looking for?

  • Bachelor’s or Master’s degree in Computer Science, Information Technology, or a related field or equivalent experience.
  • Experience in leading technical engineering teams and delivering and owning objectives.
  • Proven experience in data platform engineering, including the design, development, and optimisation of data infrastructure.
  • Strong leadership and management skills, with the ability to lead and mentor a team of engineers effectively.
  • Proficiency in programming languages such as Python, Java, or Scala.
  • Expertise in Azure cloud services and infrastructure as code (e.g., Azure Resource Manager templates, Terraform).
  • Strong understanding of data platform KPIs and accountability for delivering measurable outcomes.
  • Experience working in a product-based approach within specific technical domains and as part of a wider team.

Nice-to-Haves:

  • Knowledge of the Inner Source paradigm and way of working.
  • Experience with containerisation and orchestration technologies (e.g., Docker, Kubernetes).
  • AI platform experience (enabling models and deployment)
  • Knowledge of cloud technologies and virtual networking.
  • Familiarity with other cloud platforms (AWS, Google Cloud).

Key Responsibilities:Strategic Leadership:

  • Define and own the data platform strategy and roadmap for the technical domains, aligned with the overall Petcare data and analytics platform strategy and Petcare strategy.
  • Ensure inner sourcing of platform capabilities across all divisions and regions, fostering reuse and collaboration.
  • Track and optimise the work done by the platform engineers within your domain.

Platform Delivery & Evolution (within your domain):

  • Lead the delivery of platform capabilities, ensuring scalability, performance, and security. Being “hands on” as needed.
  • Drive the yearly plans for the domain, ensuring alignment with the wider Petcare strategic goals.
  • Collaborate with the Engineering Director and other domain leads, and architects to maintain alignment and productivity.

Stakeholder Management:

  • Along with other senior members of the team partner with D&A Leaders, engineering leads, analytics product leads, and data science leads across all divisions and regions to ensure platform capabilities meet the needs of Petcare globally.
  • Collaborate across a complex and occasionally ambiguous Digital Technology organisation structure, using influence to achieve alignment and strategic outcomes.
  • Act as the key point of contact for the domain’s platform KPIs, ensuring alignment on cost management, innovation, risk reduction, and value enablement at scale, while reporting progress and outcomes to senior leadership up to the CDO.

Governance & Accountability:

  • Establish strong governance processes to ensure alignment of platform capabilities across divisions

What can you expect from Mars?

  • Work with over 130,000 diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.