Data Platform Lead Engineer (Platform Essentials and AI enablement)

Mars Petcare UK
Greater London
10 months ago
Applications closed

Related Jobs

View all jobs

Hybrid Principal Data Engineer - Greenfield Platform Lead

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Chief Data Engineering & Platform Lead

Lead Data Engineer (Azure)

Principal Data Engineer

Cloud Platform Lead - AWS, Terraform & Data Engineering

Job Description:

We are seeking an experienced Lead Data Platform Engineer to join our team and take on a crucial role in managing a group of talented engineers. As the Lead Data Platform Engineer, you will be responsible for overseeing data platform engineering and core toolsets, with a focus on Azure infrastructure as code. You will ensure the reliability, scalability, and performance of our data infrastructure while playing a pivotal part in shaping our data ecosystem and driving innovation within our organisation.This is an exciting opportunity for a seasoned data engineer or advanced analytics engineer to step into a leadership role, shape our data infrastructure, and drive innovation in a dynamic and collaborative environment. If you are a passionate data engineer with strong leadership skills and expertise in Azure, we encourage you to apply and be a part of our dedicated global team of talented professionals and make a real impact on our Petcare data and analytics platform and make a better world for pets.What are we looking for?

  • Bachelor’s or Master’s degree in Computer Science, Information Technology, or a related field or equivalent experience.
  • Experience in leading technical engineering teams and delivering and owning objectives.
  • Proven experience in data platform engineering, including the design, development, and optimisation of data infrastructure.
  • Strong leadership and management skills, with the ability to lead and mentor a team of engineers effectively.
  • Proficiency in programming languages such as Python, Java, or Scala.
  • Expertise in Azure cloud services and infrastructure as code (e.g., Azure Resource Manager templates, Terraform).
  • Strong understanding of data platform KPIs and accountability for delivering measurable outcomes.
  • Experience working in a product-based approach within specific technical domains and as part of a wider team.

Nice-to-Haves:

  • Knowledge of the Inner Source paradigm and way of working.
  • Experience with containerisation and orchestration technologies (e.g., Docker, Kubernetes).
  • AI platform experience (enabling models and deployment)
  • Knowledge of cloud technologies and virtual networking.
  • Familiarity with other cloud platforms (AWS, Google Cloud).

Key Responsibilities:Strategic Leadership:

  • Define and own the data platform strategy and roadmap for the technical domains, aligned with the overall Petcare data and analytics platform strategy and Petcare strategy.
  • Ensure inner sourcing of platform capabilities across all divisions and regions, fostering reuse and collaboration.
  • Track and optimise the work done by the platform engineers within your domain.

Platform Delivery & Evolution (within your domain):

  • Lead the delivery of platform capabilities, ensuring scalability, performance, and security. Being “hands on” as needed.
  • Drive the yearly plans for the domain, ensuring alignment with the wider Petcare strategic goals.
  • Collaborate with the Engineering Director and other domain leads, and architects to maintain alignment and productivity.

Stakeholder Management:

  • Along with other senior members of the team partner with D&A Leaders, engineering leads, analytics product leads, and data science leads across all divisions and regions to ensure platform capabilities meet the needs of Petcare globally.
  • Collaborate across a complex and occasionally ambiguous Digital Technology organisation structure, using influence to achieve alignment and strategic outcomes.
  • Act as the key point of contact for the domain’s platform KPIs, ensuring alignment on cost management, innovation, risk reduction, and value enablement at scale, while reporting progress and outcomes to senior leadership up to the CDO.

Governance & Accountability:

  • Establish strong governance processes to ensure alignment of platform capabilities across divisions

What can you expect from Mars?

  • Work with over 130,000 diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.