National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Modeler

Birmingham
3 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Modeller
Location: Birmingham, UK (5 days a week in the office)

Our client is seeking an Experienced Data Modeller to join their team, playing a key role in designing and maintaining data models that support audit and risk assessment processes. This role will involve close collaboration with auditors, business stakeholders, and IT teams to ensure data integrity and alignment with business objectives.

Key Responsibilities:

Develop and maintain logical and physical data models to support audit and risk functions.
Build and implement reporting and analytics solutions using tools such as Tableau, Power BI, Looker, or Qlik.
Design interactive dashboards that provide clear insights into audit outcomes and risk assessments.
Ensure data quality, validation, and compliance with regulatory standards.
Maintain data dictionaries, metadata, and schema documentation.
Optimise data pipelines and warehousing solutions for both structured and unstructured data.
Use SQL and data modelling tools (e.g., Erwin, Visio) to define and implement database solutions.
Improve dashboard performance and user experience through best practices in data visualisation.

What Our Client is Looking For:

A degree in Data Science, Computer Science, Information Systems, or a related field.
At least 7 years of experience in data modelling, database design, and data architecture.
Proficiency in data modelling tools such as Erwin, ER Studio, Lucidchart, or PowerDesigner.
Strong SQL skills and experience with both relational and NoSQL databases (e.g., Oracle, SQL Server, PostgreSQL, MongoDB).
Hands-on experience with reporting and analytics tools like Tableau, Power BI, Looker, or Qlik.
A solid understanding of dashboard design and data visualisation principles.
Knowledge of audit processes, risk management, and compliance frameworks (desirable).
Familiarity with cloud platforms (AWS, Azure, GCP) and big data technologies (Hadoop, Snowflake, Databricks) is a plus.
Strong analytical, problem-solving, and communication skills.
The ability to work in a fast-paced, dynamic environment and manage multiple priorities.

Bonus Skills:

Experience in financial services, banking, or regulatory environments.
Knowledge of data governance and data lineage tools.This is an exciting opportunity to work with a forward-thinking organisation that values data-driven insights in audit and risk management. If you have the skills and experience required, we'd love to hear from you.

To apply or learn more, please get in touch.

Randstad Technologies Ltd is a leading specialist recruitment business for the IT & Engineering industries. Please note that due to a high level of applications, we can only respond to applicants whose skills & qualifications are suitable for this position. No terminology in this advert is intended to discriminate against any of the protected characteristics that fall under the Equality Act 2010. For the purposes of the Conduct Regulations 2003, when advertising permanent vacancies we are acting as an Employment Agency, and when advertising temporary/contract vacancies we are acting as an Employment Business

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.