Data Modeler

Birmingham
1 month ago
Applications closed

Related Jobs

View all jobs

Data Science Data Science Data Modeler (Remote)

Data Scientist / AI Engineer

Data Engineer

Pricing Actuary / Data Scientist F/M

Data Engineer

Data Security Engineer

Data Modeller
Location: Birmingham, UK (5 days a week in the office)

Our client is seeking an Experienced Data Modeller to join their team, playing a key role in designing and maintaining data models that support audit and risk assessment processes. This role will involve close collaboration with auditors, business stakeholders, and IT teams to ensure data integrity and alignment with business objectives.

Key Responsibilities:

Develop and maintain logical and physical data models to support audit and risk functions.
Build and implement reporting and analytics solutions using tools such as Tableau, Power BI, Looker, or Qlik.
Design interactive dashboards that provide clear insights into audit outcomes and risk assessments.
Ensure data quality, validation, and compliance with regulatory standards.
Maintain data dictionaries, metadata, and schema documentation.
Optimise data pipelines and warehousing solutions for both structured and unstructured data.
Use SQL and data modelling tools (e.g., Erwin, Visio) to define and implement database solutions.
Improve dashboard performance and user experience through best practices in data visualisation.

What Our Client is Looking For:

A degree in Data Science, Computer Science, Information Systems, or a related field.
At least 7 years of experience in data modelling, database design, and data architecture.
Proficiency in data modelling tools such as Erwin, ER Studio, Lucidchart, or PowerDesigner.
Strong SQL skills and experience with both relational and NoSQL databases (e.g., Oracle, SQL Server, PostgreSQL, MongoDB).
Hands-on experience with reporting and analytics tools like Tableau, Power BI, Looker, or Qlik.
A solid understanding of dashboard design and data visualisation principles.
Knowledge of audit processes, risk management, and compliance frameworks (desirable).
Familiarity with cloud platforms (AWS, Azure, GCP) and big data technologies (Hadoop, Snowflake, Databricks) is a plus.
Strong analytical, problem-solving, and communication skills.
The ability to work in a fast-paced, dynamic environment and manage multiple priorities.

Bonus Skills:

Experience in financial services, banking, or regulatory environments.
Knowledge of data governance and data lineage tools.This is an exciting opportunity to work with a forward-thinking organisation that values data-driven insights in audit and risk management. If you have the skills and experience required, we'd love to hear from you.

To apply or learn more, please get in touch.

Randstad Technologies Ltd is a leading specialist recruitment business for the IT & Engineering industries. Please note that due to a high level of applications, we can only respond to applicants whose skills & qualifications are suitable for this position. No terminology in this advert is intended to discriminate against any of the protected characteristics that fall under the Equality Act 2010. For the purposes of the Conduct Regulations 2003, when advertising permanent vacancies we are acting as an Employment Agency, and when advertising temporary/contract vacancies we are acting as an Employment Business

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.