Data lakes, Hadoop Developer

N Consulting Ltd
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer (Big Data/ Hadoop/ Spark) (Banking)

Data Engineer

Data Engineer

Senior Data Engineer

Senior Data Engineer

Azure Data Engineer


Job Title: Data lakes, Hadoop Developer
Location: London
Work model: Hybrid

Key Responsibilities
Design, build, and manage scalable Data Lakes to support large-scale data processing and analytics.
Develop and maintain Big Data solutions using the Hadoop ecosystem (HDFS, Hive, HBase, Spark, Pig, MapReduce, etc.).
Implement data ingestion pipelines and workflows for structured, semi-structured, and unstructured data.
Optimize data processing and storage to ensure high performance and low latency.
Collaborate with data engineers, analysts, and scientists to provide robust and efficient data access solutions.
Monitor and troubleshoot data pipelines and applications to ensure reliability and accuracy.
Implement data security, governance, and compliance practices across the data lake and Hadoop systems.
Stay updated with emerging Big Data technologies and recommend tools or approaches to enhance the data platform.

Required Skills and Qualifications
Proven experience with Hadoop ecosystems, including HDFS, YARN, Hive, HBase, MapReduce, and Spark.
Expertise in Data Lake architectures and principles.
Proficiency in programming languages such as Python, Java, or Scala for Big Data processing.
Hands-on experience with ETL tools, data ingestion frameworks, and workflow schedulers (e.g., Apache Nifi, Airflow).
Strong knowledge of cloud platforms such as AWS (S3, EMR, Glue), Azure (Data Lake Storage, Synapse), or Google Cloud (BigQuery, Dataflow).
Familiarity with query languages like SQL, HiveQL, or Presto.
Understanding of data governance, security, and compliance (e.g., GDPR, HIPAA).
Excellent problem-solving skills and the ability to debug and resolve issues in distributed systems.

Preferred Qualifications
Experience with Kubernetes, Docker, or other containerization technologies for Big Data deployments.
Knowledge of streaming frameworks like Kafka, Flume, or Spark Streaming.
Hands-on experience in implementing machine learning workflows in a Big Data environment.
Certifications in Big Data technologies or cloud platforms (e.g., AWS Big Data Specialty, Cloudera Certified Professional).
Familiarity with tools like Databricks, Delta Lake, or Snowflake.
 

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.