National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineering Manager

TalentHawk
Havant
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

The Data Engineering Manager is responsible for establishing and overseeing the Data Engineering and Data Ops functions, ensuring the efficient and effective management of data to drive business value.


Key Responsibilities

  • Develop and own the data engineering strategy and roadmap to maximize long-term business value.
  • Prioritize, plan, and ensure the timely and high-quality delivery of data engineering initiatives.
  • Oversee third-line support, technology upgrades, and the introduction of new technologies within agreed timelines.
  • Provide technical guidance and mentorship to the team and wider organization on data engineering challenges and solutions.
  • Design and architect scalable data pipelines for efficient data ingestion, transformation, and loading.
  • Manage and optimize data platforms, including infrastructure, upgrades, and connectivity.
  • Build and lead a high-performing Data Engineering team, including internal staff and third-party resources.
  • Establish clear service definitions, SLAs, and performance expectations for the team, ensuring adherence.
  • Act as a data and analytics champion, fostering a culture of innovation and excellence within the Analytics & Insight team.
  • Stay abreast of industry trends and emerging technologies to enhance data infrastructure and capabilities.
  • Manage budgets for data-related activities and projects within the broader analytics budget.
  • Establish and manage third-party commercial agreements, including vendor selection and contract negotiations.
  • Collaborate with stakeholders across functions to align data engineering initiatives with business goals.
  • Leverage a deep understanding of the business and data landscape to drive value through data initiatives.


Required Expertise

  • Degree or equivalent qualification in a data-related discipline or relevant experience in high-performing Data Engineering and Analytics functions.
  • Proven leadership experience in managing Data, Environment, and Release Delivery teams, including resource and cost management.
  • Expertise in Data Engineering and Environment management, preferably in AWS, with experience in automation tools.
  • Strong knowledge of SQL & Python, with hands-on experience in data engineering tools and technologies.
  • Experience working on data science and machine learning projects.
  • Familiarity with Data Ops or DevOps environments and software development life cycles.


Key Competencies & Attributes

  • Strong team development and performance management skills.
  • Ability to coach and motivate teams under pressure and manage competing priorities.
  • A commitment to continuous learning and staying up to date with evolving technologies.
  • Attention to detail, fairness, and integrity.
  • Inquisitive and innovative mindset, with a drive to explore new processes and methodologies.
  • Excellent communication and collaboration skills, with the ability to engage stakeholders across business functions.
  • A positive leader with a growth mindset, striving to build a high-performing data function.
  • Strong decision-making and problem-solving capabilities.
  • Ability to balance business objectives with resource constraints and competing priorities.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.