Data Engineering Manager

TalentHawk
portsmouth, yorkshire and the humber, uk
7 months ago
Applications closed

Related Jobs

View all jobs

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Head of Data Engineering

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, Hybrid, 1 Day PW, Up to £140,000

The Data Engineering Manager is responsible for establishing and overseeing the Data Engineering and Data Ops functions, ensuring the efficient and effective management of data to drive business value.


Key Responsibilities

  • Develop and own the data engineering strategy and roadmap to maximize long-term business value.
  • Prioritize, plan, and ensure the timely and high-quality delivery of data engineering initiatives.
  • Oversee third-line support, technology upgrades, and the introduction of new technologies within agreed timelines.
  • Provide technical guidance and mentorship to the team and wider organization on data engineering challenges and solutions.
  • Design and architect scalable data pipelines for efficient data ingestion, transformation, and loading.
  • Manage and optimize data platforms, including infrastructure, upgrades, and connectivity.
  • Build and lead a high-performing Data Engineering team, including internal staff and third-party resources.
  • Establish clear service definitions, SLAs, and performance expectations for the team, ensuring adherence.
  • Act as a data and analytics champion, fostering a culture of innovation and excellence within the Analytics & Insight team.
  • Stay abreast of industry trends and emerging technologies to enhance data infrastructure and capabilities.
  • Manage budgets for data-related activities and projects within the broader analytics budget.
  • Establish and manage third-party commercial agreements, including vendor selection and contract negotiations.
  • Collaborate with stakeholders across functions to align data engineering initiatives with business goals.
  • Leverage a deep understanding of the business and data landscape to drive value through data initiatives.


Required Expertise

  • Degree or equivalent qualification in a data-related discipline or relevant experience in high-performing Data Engineering and Analytics functions.
  • Proven leadership experience in managing Data, Environment, and Release Delivery teams, including resource and cost management.
  • Expertise in Data Engineering and Environment management, preferably in AWS, with experience in automation tools.
  • Strong knowledge of SQL & Python, with hands-on experience in data engineering tools and technologies.
  • Experience working on data science and machine learning projects.
  • Familiarity with Data Ops or DevOps environments and software development life cycles.


Key Competencies & Attributes

  • Strong team development and performance management skills.
  • Ability to coach and motivate teams under pressure and manage competing priorities.
  • A commitment to continuous learning and staying up to date with evolving technologies.
  • Attention to detail, fairness, and integrity.
  • Inquisitive and innovative mindset, with a drive to explore new processes and methodologies.
  • Excellent communication and collaboration skills, with the ability to engage stakeholders across business functions.
  • A positive leader with a growth mindset, striving to build a high-performing data function.
  • Strong decision-making and problem-solving capabilities.
  • Ability to balance business objectives with resource constraints and competing priorities.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.