Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineering Lead (Snowflake & AWS Environment)

Middlesex
7 months ago
Applications closed

Related Jobs

View all jobs

Data Engineering Lead - FinTech Unicorn - Up to £140k

Data Engineering Lead — Azure & Databricks (Remote)

Data Engineering Lead - Azure & Databricks | Remote

Remote Data Engineering Lead - Azure & Databricks

Remote Data Engineering Lead - Azure & Databricks

Senior Data Engineer

Data Engineering Lead (Snowflake & AWS Environment)

Hybrid working: 3 days in TW6, Middlesex offices & 2 days home/remote
Salary: Negotiable to £70,000 DOE plus 40 % bonus potential
Job Ref: J12869

Please note we can only accept applications from those with current UK working rights for this role, this client cannot offer visa sponsorship.

An exciting opportunity has arisen within a FTSE 100 company for a Data Engineering Lead to play a pivotal role in operating and delivering the organisation's data products. This position holds significant responsibility within the data leadership team, ensuring the data solutions and business processes are fully aligned and contribute to the vision and strategic direction of the organisation.

This is an exciting to time to join the organisation as they are in the early stages of a major programme of work to modernise their data infrastructure, tooling and processes to migrate from an on-premise to a cloud native environment. The Data Engineering Lead will be essential to the success of this transformation.

Using your strong communication skills combined with AWS and Snowflake technical expertise, you will be responsible for managing and guiding a team of Data Engineers to develop effective and innovative solutions aligning to the organisation's architectural principles and business needs. You will ensure the team adheres to best practices in data engineering and contributes to the continuous improvement of the data systems.

Key Responsibilities:
·Lead the design, development, and deployment of scalable and efficient data pipelines and architectures.
·Manage and mentor a team of data engineers, ensuring a culture of collaboration and excellence.
·Manage demand for data engineering resources, prioritising tasks and projects based on business needs and strategic goals.
·Monitor and report on the progress of data engineering projects, addressing any issues or risks that may arise.
·Collaborate closely with Analytics Leads, Data Architects, and the wider Digital and Information team to ensure seamless integration and operation of data solutions.
·Develop and implement a robust data operations capability to ensure the smooth running and reliability of our data estate.
·Drive the adoption of cloud technologies and modern data engineering practices within the team.
·Ensure data governance and compliance with relevant regulations and standards.
·Work with the team to define and implement best practices for data engineering, including coding standards, documentation, version control.

Technical Skills Required:
·Proven Engineering Experience using the AWS Services (S3, EC2, Lambda, Glue)
·Proven Data warehousing Experience in Snowflake
·Expert in SQL and database concepts including performance tuning and optimisation
·Solid understanding of data warehousing principles, data modelling practice,
·Excellent knowledge of creation and maintenance of data pipelines - ETL Tools (e.g. Apache Airflow) and Streaming processing tools (e.g. Kinesis)
·Strong problem-solving and analytical skills, with the ability to troubleshoot and resolve complex data-related issues
·Proficient in data integration techniques including APIs and real-time ingestion
·Excellent communication and collaboration skills to work effectively with cross-functional teams
·Capable of building, leading, and developing a team of data engineers
·Strong project management skills and an ability to manage multiple projects and priorities

Additional Experience:
·Experienced and confident leadership of data engineering activities (essential)
·Expert in data engineering practice on cloud data platforms (essential)
·Background in data analysis and preparation, including experience with large data sets and unstructured data (desirable)
·Knowledge of AI/Data Science principles (desirable)

If you are seeking a fresh challenge to lead and take ownership of an exciting data engineering transformation project, then get in touch to find out more!

Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme.

Datatech is one of the UK's leading recruitment agencies in the field of analytics and host of the critically acclaimed event, Women in Data. For more information, visit our website: (url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.