Data Engineering & Analytics Manager

Jet2.com
West Yorkshire
7 months ago
Applications closed

Related Jobs

View all jobs

Head of Data Engineering & Analytics (Hybrid)

Agile Team Manager (Data Engineering)

Data Engineer (Governance)

Tech Lead / Lead Data Engineer - Outside IR35 - SC + NPPV3 Cleared

Tech Lead / Lead Data Engineer - Outside IR35 - SC + NPPV3 Cleared

MLOps Engineer

Job Description:

Reporting to theGeneral Manager of Data Engineering & Analytics, you’ll manage several multi-disciplinary data delivery teams aligned to one of our key customer journey stages with a remit to deliver a wide variety of data analytics, and data integration initiatives.
 
As our Data Engineering & Analytics Manager, you’ll have access to a wide range of benefits including:
  • Hybrid working (we’re in the office 3 days per week)
  • Annual pay reviews
  • Colleague discounts onJet2holidaysandJet2.comflights
 
What you’ll be doing:
 
As an Data Engineering & Analytics Managerin our Data teams, you’ll lead across 4 key areas: -
 
  • Data Delivery– You’ll be responsible for the delivery performance of your teams and ensure key delivery metrics are closely monitored and allow you to best provide support where needed.
  • Data Culture– You’ll drive a data-first culture both within the data team and across the business by supporting continual learning and development across your teams and the wider business
  • Data Architecture & Solution Design– You’ll support the optimisation of our data architecture, working closely with other data managers and our data architecture team
  • Team Leadership– You’ll manage several multi-disciplinary data delivery teams consisting of Data & Analytics Engineers and Test Engineers with Data Scientists and Data Visualisation specialists embedded as required.
 
What you’ll have:
 
  • Communication and Management– Strong communication skills will be needed to influence teams and stakeholders at all levels of the organisation from Engineers to C-level. The role manages several multi-disciplinary teams, so you’ll be experienced in setting direction and communicating priorities clearly
  • Analytical Focus- You should have practical experience helping business users to translate analytical requirements into technical solutions and ensuring that the right analytical questions are being asked
  • Technical Ability – Strong proficiency needed in designing and delivering data and analytics solution across multiple platforms as well as strong understanding of cloud platforms such asAWS, AzureandGCP(AWS is preferred). Desirable expertise in the following:
    • Data Warehousing –Snowflake(preferred),Google BigQuery, AWS RedshiftorAzure Synapse.A good understanding, and practical experience, of analytical data modelling techniques is essential (e.g. dimensional modelling, data vault, etc)
    • Data Pipelines – Experience working with a wide variety of data sources and data transformation techniques
    • Data Visualisation - Although we have dedicated data visualisation specialists within the team, any knowledge of, or experience with, data visualisation platforms such as Tableau (preferred) would be beneficial
 
This role will likely be focused in our finance and corporate applications domain initially so although prior experience of working in a finance domain is not essential, any experience in this area would be a distinct advantage.
 
#LI-Hybrid
 

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.