Data Engineer - V8 Supercars

Team 18
London
4 weeks ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer SAP {Defence, MoD

About Team 18


Team 18 competes in the Repco Supercars Championship, Australia’s premier motorsport category. We’re a performance-driven team focused on technical innovation, strategic racing, and continuous improvement both on and off the track. We are looking for a passionate and technically capableData Engineerto join our engineering group to help drive performance through data.


Position Overview


As a Data Engineer, you will play a key role in acquiring, managing, and analyzing large volumes of motorsport and telemetry data to provide actionable insights that enhance car performance, reliability, and race strategy. Working closely with race engineers, performance analysts, and the broader technical team, you’ll support data systems during race weekends and continuously improve processes through automation and advanced analytics.


Key Responsibilities


  • Develop, maintain, and optimize data pipelines for telemetry, video, and sensor data from Supercars.
  • Build and manage databases and data storage systems for performance analysis.
  • Support live data acquisition and processing during race events and test sessions.
  • Collaborate with engineers to develop custom tools for data simulation, visualization and real-time analysis.
  • Ensure data integrity, version control, and accessibility for all stakeholders.
  • Automate reporting for post-session and post-race analysis.
  • Assist in the integration of third-party data sources (e.g. MoTeC, etc).
  • Drive innovation in the use of machine learning or predictive models to enhance performance decision-making.
  • Provide trackside support as required across the race calendar, requiring regular interstate travel

Qualifications


  • Bachelor’s degree in Engineering, Computer Science, Motorsport Engineering, or related field.
  • Highly proficient and experienced working with telemetry systems, preferably MoTeC or similar.
  • Strong proficiency in Python, SQL, and data analysis libraries (Pandas, NumPy, etc.).
  • Familiarity with data visualisation tools (e.g. Plotly, Power BI, MATLAB, or custom dashboards).
  • Understanding of motorsport operations and vehicle dynamics is a strong advantage.
  • Experience with version control (Git) and data management best practices.
  • Excellent problem-solving skills and attention to detail.
  • Ability to work under pressure and thrive in a high-performance team environment.
  • Willingness to travel to events, tests, and workshops as required.

Preferred Requirements


  • Experience in motorsport field
  • Experience with cloud services (AWS, Azure) or containerized environments (Docker).
  • Background in machine learning or predictive modelling for motorsport or automotive applications.
  • Previous experience working within a Supercars team or similar motorsport environment.

What We Offer


  • Competitive salary and benefits package
  • A collaborative and innovative work culture.
  • A dynamic, competitive, and fast-paced engineering environment.
  • Opportunities for growth in motorsport and cutting-edge racing technology.
  • Access to state-of-the-art tools, data systems, and race support infrastructure.

How to Apply:


If you have the skills, passion, and drive to be part of a winning team, we want to hear from you! Please submit your resume, portfolio (if available), and a brief cover letter explaining why youre the perfect fit forTeam 18.


Team 18 Supercar Team is an equal opportunity employer. We celebrate diversity and are committed to creating an inclusive environment for all employees.


Join us and be part of a team that’s built for speed, precision, and excellence!

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Machine Learning Degrees (2025 Guide)

Explore ten UK universities that deliver world-class machine-learning degrees in 2025. Compare entry requirements, course content, research strength and industry links to find the programme that fits your goals. Machine learning (ML) has shifted from academic curiosity to the engine powering everything from personalised medicine to autonomous vehicles. UK universities have long been pioneers in the field, and their programmes now blend rigorous theory with hands-on practice on industrial-scale datasets. Below, we highlight ten institutions whose undergraduate or postgraduate pathways focus squarely on machine learning. League tables move each year, but these universities consistently excel in teaching, research and collaboration with industry.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.