National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer - V8 Supercars

Team 18
London
2 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

About Team 18


Team 18 competes in the Repco Supercars Championship, Australia’s premier motorsport category. We’re a performance-driven team focused on technical innovation, strategic racing, and continuous improvement both on and off the track. We are looking for a passionate and technically capableData Engineerto join our engineering group to help drive performance through data.


Position Overview


As a Data Engineer, you will play a key role in acquiring, managing, and analyzing large volumes of motorsport and telemetry data to provide actionable insights that enhance car performance, reliability, and race strategy. Working closely with race engineers, performance analysts, and the broader technical team, you’ll support data systems during race weekends and continuously improve processes through automation and advanced analytics.


Key Responsibilities


  • Develop, maintain, and optimize data pipelines for telemetry, video, and sensor data from Supercars.
  • Build and manage databases and data storage systems for performance analysis.
  • Support live data acquisition and processing during race events and test sessions.
  • Collaborate with engineers to develop custom tools for data simulation, visualization and real-time analysis.
  • Ensure data integrity, version control, and accessibility for all stakeholders.
  • Automate reporting for post-session and post-race analysis.
  • Assist in the integration of third-party data sources (e.g. MoTeC, etc).
  • Drive innovation in the use of machine learning or predictive models to enhance performance decision-making.
  • Provide trackside support as required across the race calendar, requiring regular interstate travel

Qualifications


  • Bachelor’s degree in Engineering, Computer Science, Motorsport Engineering, or related field.
  • Highly proficient and experienced working with telemetry systems, preferably MoTeC or similar.
  • Strong proficiency in Python, SQL, and data analysis libraries (Pandas, NumPy, etc.).
  • Familiarity with data visualisation tools (e.g. Plotly, Power BI, MATLAB, or custom dashboards).
  • Understanding of motorsport operations and vehicle dynamics is a strong advantage.
  • Experience with version control (Git) and data management best practices.
  • Excellent problem-solving skills and attention to detail.
  • Ability to work under pressure and thrive in a high-performance team environment.
  • Willingness to travel to events, tests, and workshops as required.

Preferred Requirements


  • Experience in motorsport field
  • Experience with cloud services (AWS, Azure) or containerized environments (Docker).
  • Background in machine learning or predictive modelling for motorsport or automotive applications.
  • Previous experience working within a Supercars team or similar motorsport environment.

What We Offer


  • Competitive salary and benefits package
  • A collaborative and innovative work culture.
  • A dynamic, competitive, and fast-paced engineering environment.
  • Opportunities for growth in motorsport and cutting-edge racing technology.
  • Access to state-of-the-art tools, data systems, and race support infrastructure.

How to Apply:


If you have the skills, passion, and drive to be part of a winning team, we want to hear from you! Please submit your resume, portfolio (if available), and a brief cover letter explaining why youre the perfect fit forTeam 18.


Team 18 Supercar Team is an equal opportunity employer. We celebrate diversity and are committed to creating an inclusive environment for all employees.


Join us and be part of a team that’s built for speed, precision, and excellence!

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.