National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer - Snowflake

BJSS
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

About Us We’re an award-winning innovative tech consultancy - a team of creative problem solvers. Since 1993 we’ve been finding better, more sustainable ways to solve complex technology problems for some of the world’s leading organisations and delivered solutions that millions of people use every day. In the last 30 years we won several awards, including a prestigious Queen’s Award for Enterprise in the Innovation category for our Enterprise Agile delivery approach. Operating from 26 locations across the world, we bring together teams of creative experts with diverse backgrounds and experiences, who enjoy working and learning in our collaborative and open culture and are committed to world-class delivery. We want to continue to grow our team with people just like you! About the Role Were building out our Data Engineering practice across multiple levels. Depending on your experience and aspirations, you could be contributing as a key team member, leading a dedicated team, or taking on principal engineer responsibilities across multiple teams and larger strategic projects. The role and responsibilities will be tailored to your experience level and our organisational needs. We are Software Engineers who use SDLC best practices to build scalable, re-usable data solutions to help clients use their data to gain insights, drive decisions, and deliver business value. Clients engage BJSS to take on their complex challenges, looking to us to help deliver results against their business-critical needs which means we get to work with a wide range of tools and technologies and there are always new things to learn. BJSS Data Engineers are specialist software engineers that build, optimise, and maintain data applications, systems and services. This role combines the discipline of software engineering with the knowledge and experience of building solutions to deliver business value. You can expect to get involved in a variety of projects in the cloud (AWS, Azure, GCP), while also gaining opportunities to work with Snowflake, Databricks, BigQuery, and Fabric. We work with near real-time/streaming data, geospatial data and using modern AI-tooling to accelerate development. About You You will need: Minimum of two years of recent experience designing and implementing a full-scale data warehouse solution based on Snowflake A minimum of one year of performing architectural assessments, examining architectural alternatives, and choosing the best solution in collaboration with both IT and business stakeholders Fluent in Python, Java, Scala, or similar Object-Oriented Programming Languages Advanced working SQL knowledge and experience working with relational databases, query authoring (SQL) as well as working familiarity with a variety of databases Working knowledge of one or more of the cloud platforms (AWS, Azure, GCP) Experience building ETL/ELT pipelines specifically using DBT for structured and semi-structured datasets Any orchestration toolings such as Airflow, Dagster, Azure Data Factory, Fivetran etc It will be nice to have: Software engineering background Exposure to building or deploying AI/ML models into a production environment Previously used AWS data services e.g. S3, Kinesis, Glue, Athena, DynamoDB, SNS/SQS Experience using any data streaming technologies/paradigms for real-time or near-real time analytics

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.