Data Engineer, Product Analytics

Meta
London
1 week ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Senior Cloud/Data Engineer

Principal Data Engineer

Senior Data Engineer

Data Engineer

Senior Data Engineer

As a Data Engineer at Meta, you will shape the future of people-facing and business-facing products we build across our entire family of applications (Facebook, Instagram, Messenger, WhatsApp, Reality Labs, Threads). Your technical skills and analytical mindset will be utilized designing and building some of the world's most extensive data sets, helping to craft experiences for billions of people and hundreds of millions of businesses worldwide. In this role, you will collaborate with software engineering, data science, and product management teams to design/build scalable data solutions across Meta to optimize growth, strategy, and user experience for our 3 billion plus users, as well as our internal employee community. You will be at the forefront of identifying and solving some of the most interesting data challenges at a scale few companies can match. By joining Meta, you will become part of a world-class data engineering community dedicated to skill development and career growth in data engineering and beyond.

Data Engineering Responsibilities

  • Guide teams by building optimal data artifacts (including datasets and visualizations) to address key questions.
  • Refine our systems, design logging solutions, and create scalable data models.
  • Ensure data security and quality, and with a focus on efficiency, suggest architecture and development approaches and data management standards to address complex analytical problems.

Product Leadership Responsibilities

  • Use data to shape product development, identify new opportunities, and tackle upcoming challenges.
  • Ensure our products add value for users and businesses, by prioritizing projects, and driving innovative solutions to respond to challenges or opportunities.

Communication and Influence Responsibilities

  • Present data-driven stories and convince partners using clear insights and recommendations.
  • Build credibility through structure and clarity, becoming a trusted strategic partner.

Data Engineer, Product Analytics Responsibilities

  • Conceptualize and own the data architecture for multiple large-scale projects, while evaluating design and operational cost-benefit tradeoffs within systems.
  • Create and contribute to frameworks that improve the efficacy of logging data, while working with data infrastructure to triage issues and resolve.
  • Collaborate with engineers, product managers, and data scientists to understand data needs, representing key data insights in a meaningful way.
  • Define and manage Service Level Agreements for all data sets in allocated areas of ownership.
  • Determine and implement the security model based on privacy requirements, confirm safeguards are followed, address data quality issues, and evolve governance processes within allocated areas of ownership.
  • Design, build, and launch collections of sophisticated data models and visualizations that support multiple use cases across different products or domains.
  • Solve our most challenging data integration problems, utilizing optimal Extract, Transform, Load (ETL) patterns, frameworks, query techniques, sourcing from structured and unstructured data sources.
  • Assist in owning existing processes running in production, optimizing complex code through advanced algorithmic concepts.
  • Optimize pipelines, dashboards, frameworks, and systems to facilitate easier development of data artifacts.
  • Influence product and cross-functional teams to identify data opportunities to drive impact.
  • Mentor team members by giving/receiving actionable feedback.

Minimum Qualifications

  • Bachelor's degree in Computer Science, Computer Engineering, relevant technical field, or equivalent.
  • 4+ years of experience where the primary responsibility involves working with data. This could include roles such as data analyst, data scientist, data engineer, or similar positions.
  • 4+ years of experience (or a minimum of 2+ years with a Ph.D) with SQL, ETL, data modeling, and at least one programming language (e.g., Python, C++, C#, Scala, etc.).

Preferred Qualifications

  • Master's or Ph.D degree in a STEM field.

About Meta

Meta builds technologies that help people connect, find communities, and grow businesses. When Facebook launched in 2004, it changed the way people connect. Apps like Messenger, Instagram and WhatsApp further empowered billions around the world. Now, Meta is moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. People who choose to build their careers by building with us at Meta help shape a future that will take us beyond what digital connection makes possible today-beyond the constraints of screens, the limits of distance, and even the rules of physics.

Equal Employment Opportunity

Meta is proud to be an Equal Employment Opportunity employer. We do not discriminate based upon race, religion, color, national origin, sex (including pregnancy, childbirth, reproductive health decisions, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, genetic information, political views or activity, or other applicable legally protected characteristics. You may view our Equal Employment Opportunity notice here.

Meta is committed to providing reasonable accommodations for qualified individuals with disabilities and disabled veterans in our job application procedures. If you need assistance or an accommodation due to a disability, fill out the Accommodations request form.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!