National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer, Product Analytics

Meta
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Junior/Mid/Senior Data Engineer - Hybrid, London

Junior/Mid/Senior Data Engineer - Hybrid, London

Junior/Mid/Senior Data Engineer - Hybrid, London

Junior/Mid/Senior Data Engineer - Hybrid, London

Junior/Mid/Senior Data Engineer - Hybrid, London

As a Data Engineer at Meta, you will shape the future of people-facing and business-facing products we build across our entire family of applications (Facebook, Instagram, Messenger, WhatsApp, Reality Labs, Threads). Your technical skills and analytical mindset will be utilized designing and building some of the world's most extensive data sets, helping to craft experiences for billions of people and hundreds of millions of businesses worldwide. In this role, you will collaborate with software engineering, data science, and product management teams to design/build scalable data solutions across Meta to optimize growth, strategy, and user experience for our 3 billion plus users, as well as our internal employee community. You will be at the forefront of identifying and solving some of the most interesting data challenges at a scale few companies can match. By joining Meta, you will become part of a world-class data engineering community dedicated to skill development and career growth in data engineering and beyond.

Data Engineering Responsibilities

  • Guide teams by building optimal data artifacts (including datasets and visualizations) to address key questions.
  • Refine our systems, design logging solutions, and create scalable data models.
  • Ensure data security and quality, and with a focus on efficiency, suggest architecture and development approaches and data management standards to address complex analytical problems.

Product Leadership Responsibilities

  • Use data to shape product development, identify new opportunities, and tackle upcoming challenges.
  • Ensure our products add value for users and businesses, by prioritizing projects, and driving innovative solutions to respond to challenges or opportunities.

Communication and Influence Responsibilities

  • Present data-driven stories and convince partners using clear insights and recommendations.
  • Build credibility through structure and clarity, becoming a trusted strategic partner.

Data Engineer, Product Analytics Responsibilities

  • Conceptualize and own the data architecture for multiple large-scale projects, while evaluating design and operational cost-benefit tradeoffs within systems.
  • Create and contribute to frameworks that improve the efficacy of logging data, while working with data infrastructure to triage issues and resolve.
  • Collaborate with engineers, product managers, and data scientists to understand data needs, representing key data insights in a meaningful way.
  • Define and manage Service Level Agreements for all data sets in allocated areas of ownership.
  • Determine and implement the security model based on privacy requirements, confirm safeguards are followed, address data quality issues, and evolve governance processes within allocated areas of ownership.
  • Design, build, and launch collections of sophisticated data models and visualizations that support multiple use cases across different products or domains.
  • Solve our most challenging data integration problems, utilizing optimal Extract, Transform, Load (ETL) patterns, frameworks, query techniques, sourcing from structured and unstructured data sources.
  • Assist in owning existing processes running in production, optimizing complex code through advanced algorithmic concepts.
  • Optimize pipelines, dashboards, frameworks, and systems to facilitate easier development of data artifacts.
  • Influence product and cross-functional teams to identify data opportunities to drive impact.
  • Mentor team members by giving/receiving actionable feedback.

Minimum Qualifications

  • Bachelor's degree in Computer Science, Computer Engineering, relevant technical field, or equivalent.
  • 4+ years of experience where the primary responsibility involves working with data. This could include roles such as data analyst, data scientist, data engineer, or similar positions.
  • 4+ years of experience (or a minimum of 2+ years with a Ph.D) with SQL, ETL, data modeling, and at least one programming language (e.g., Python, C++, C#, Scala, etc.).

Preferred Qualifications

  • Master's or Ph.D degree in a STEM field.

About Meta

Meta builds technologies that help people connect, find communities, and grow businesses. When Facebook launched in 2004, it changed the way people connect. Apps like Messenger, Instagram and WhatsApp further empowered billions around the world. Now, Meta is moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. People who choose to build their careers by building with us at Meta help shape a future that will take us beyond what digital connection makes possible today-beyond the constraints of screens, the limits of distance, and even the rules of physics.

Equal Employment Opportunity

Meta is proud to be an Equal Employment Opportunity employer. We do not discriminate based upon race, religion, color, national origin, sex (including pregnancy, childbirth, reproductive health decisions, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, genetic information, political views or activity, or other applicable legally protected characteristics. You may view our Equal Employment Opportunity notice here.

Meta is committed to providing reasonable accommodations for qualified individuals with disabilities and disabled veterans in our job application procedures. If you need assistance or an accommodation due to a disability, fill out the Accommodations request form.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.