Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer Manager

Canary Wharf
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer - Manager

Data Engineer Apprentice

Data Engineer

Lead Data Engineer - UK

Senior Data Engineer

Data Engineer/Solution Architect

Data Engineer Manager

Perm

London

£75,000pa - £85,000pa

Role Summary

The Data Engineer Manager is responsible drive the design, development, and optimization of data solutions in the data infrastructure. In addition to fostering the growth of a skilled team, you will play a pivotal role in delivering the data applications, infrastructure, and services, ensuring they align with organizational goals and industry best practices.

As part of the Technology Hub the Data Engineer Manager will work very closely with all teams across the business. The role is instrumental in defining and upholding a clear vision for the integrity of data life cycle management aligning the strategic goal of becoming a centre of expertise. Additionally, it ensures stewardship of business data and technical architecture, fostering innovation and reliability across all data initiatives.

Key Responsibilities



Mentor the data engineering team to design and implement complex, tailored data solutions that support processing of high volumes of data across all schemes and applications.

*

Establish and support the technical vision and strategy for a robust data architecture that aligns with the overall strategy, with a strong focus on ensuring security for all structured data.

*

Establish and maintain robust operational support and monitoring systems to ensure the reliable performance of critical systems in live environments.

*

Facilitate the adoption and implementation of continuous delivery practices while advocating for the use of cloud solutions.

*

Design, implement, and optimize end-to-end data pipelines and solutions on Azure, ensuring data quality, reliability, and security throughout. Oversee the integration of both structured and unstructured data sources.

*

Oversee project timelines, scope, and deliverables to ensure successful execution, while actively monitoring progress and addressing risks proactively.

*

Implement best practices for process improvements, cost optimization and monitoring.

*

Continuously evaluate and improve the Azure data platform to enhance performance and scalability.

*

Collaborate with stakeholders to understand business requirements and translate them into technical solutions.

*

Develop and implement a comprehensive data governance framework to ensure data quality, security, and compliance across the data applications.

*

Design, evaluate impacts, perform technical design reviews, and approve technical designs as part of the design authority process.

*

Establish and maintain comprehensive documentation for all data engineering processes, pipelines, and systems.

*

Implement best practices for maintaining version control and traceability of documentation.

*

Foster continuous learning and adoption of the latest technologies while mentoring and training the data engineering team.

Key Requirements

Essential:

*

Minimum 6 years’ experience in Data Engineering, Data Architecture & Governance frameworks.

*

Minimum 4 years' experience with Python, preferably PySpark.

*

Experience leading small teams of Engineers.

*

Excellent communication and stakeholder management abilities.

*

Strong expertise in Azure: ADLS, Databricks, Stream Analytics, SQL DW, Synapse, Databricks, Azure Functions, Serverless Architecture, ARM T emplates, DevOps.

*

Hands-on experience with ETL/ELT processes and data warehousing.

*

Solid understanding of data security and compliance standards.

*

Experience with DevOps practices and tools (e.g., CI/CD pipelines, Azure DevOps).

*

The ability to simplify complex technical issues for a non-technical stakeholder audience.

*

Capable of understanding business needs and requirements while providing valuable, insightful recommendations.

*

Skilled in delivering presentations and technical reports clearly and persuasively

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.