Data Engineer Manager

Canary Wharf
11 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer Manager

Data Engineer - Manager

Consultant - Manager, Data Engineer, AI & Data, Defence & Security

Data Engineer: Data Pipelines & DataOps (Edinburgh, 6m)

Data Engineer – Payments

Data Engineer, Payments Analytics & Growth

Data Engineer Manager

Perm

London

£75,000pa - £85,000pa

Role Summary

The Data Engineer Manager is responsible drive the design, development, and optimization of data solutions in the data infrastructure. In addition to fostering the growth of a skilled team, you will play a pivotal role in delivering the data applications, infrastructure, and services, ensuring they align with organizational goals and industry best practices.

As part of the Technology Hub the Data Engineer Manager will work very closely with all teams across the business. The role is instrumental in defining and upholding a clear vision for the integrity of data life cycle management aligning the strategic goal of becoming a centre of expertise. Additionally, it ensures stewardship of business data and technical architecture, fostering innovation and reliability across all data initiatives.

Key Responsibilities



Mentor the data engineering team to design and implement complex, tailored data solutions that support processing of high volumes of data across all schemes and applications.

*

Establish and support the technical vision and strategy for a robust data architecture that aligns with the overall strategy, with a strong focus on ensuring security for all structured data.

*

Establish and maintain robust operational support and monitoring systems to ensure the reliable performance of critical systems in live environments.

*

Facilitate the adoption and implementation of continuous delivery practices while advocating for the use of cloud solutions.

*

Design, implement, and optimize end-to-end data pipelines and solutions on Azure, ensuring data quality, reliability, and security throughout. Oversee the integration of both structured and unstructured data sources.

*

Oversee project timelines, scope, and deliverables to ensure successful execution, while actively monitoring progress and addressing risks proactively.

*

Implement best practices for process improvements, cost optimization and monitoring.

*

Continuously evaluate and improve the Azure data platform to enhance performance and scalability.

*

Collaborate with stakeholders to understand business requirements and translate them into technical solutions.

*

Develop and implement a comprehensive data governance framework to ensure data quality, security, and compliance across the data applications.

*

Design, evaluate impacts, perform technical design reviews, and approve technical designs as part of the design authority process.

*

Establish and maintain comprehensive documentation for all data engineering processes, pipelines, and systems.

*

Implement best practices for maintaining version control and traceability of documentation.

*

Foster continuous learning and adoption of the latest technologies while mentoring and training the data engineering team.

Key Requirements

Essential:

*

Minimum 6 years’ experience in Data Engineering, Data Architecture & Governance frameworks.

*

Minimum 4 years' experience with Python, preferably PySpark.

*

Experience leading small teams of Engineers.

*

Excellent communication and stakeholder management abilities.

*

Strong expertise in Azure: ADLS, Databricks, Stream Analytics, SQL DW, Synapse, Databricks, Azure Functions, Serverless Architecture, ARM T emplates, DevOps.

*

Hands-on experience with ETL/ELT processes and data warehousing.

*

Solid understanding of data security and compliance standards.

*

Experience with DevOps practices and tools (e.g., CI/CD pipelines, Azure DevOps).

*

The ability to simplify complex technical issues for a non-technical stakeholder audience.

*

Capable of understanding business needs and requirements while providing valuable, insightful recommendations.

*

Skilled in delivering presentations and technical reports clearly and persuasively

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.