National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer - Hybrid/Bristol - Up to £55k

Bristol
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer - Hybrid/Bristol - Up to £55,000

Job Title: Data Engineer

Location: Hybrid/Bristol (Min. 2 days per week)

Remuneration: £45,000 - £55,000 per annum

Responsibilities:

  • Pipeline Development and Optimisation: Continuously assess and improve the performance of data enrichment pipelines, ensuring their efficiency, dependability, and scalability.

  • Data Management: Design and implement robust processes for data ingestion and cleaning, supporting machine learning and analytical models.

  • Collaborative Problem-Solving: Work closely with data scientists to troubleshoot, identify, and resolve complex issues, ensuring smooth operations across the board.

  • Model Development and Deployment: Assist in building, training, monitoring, and deploying cutting-edge machine learning models.

  • Stay Current with AI/ML Trends: Keep up to date with the latest advancements in data processing, AI, and ML, and incorporate them into our client's processes to improve efficiency.

  • Adaptable Approach: Collaborate across different functions as required, including taking on backend development tasks like API creation with support from more senior engineers.

    Our client, a leading player in the risk industry, is seeking a skilled and motivated Data Engineer to join their innovative team in Bristol. With a minimum requirement of two days per week in the office, this position offers the opportunity to contribute to the development and optimisation of AI/ML-powered data enrichment workflows and infrastructure. We are seeking someone with a strong Python expertise, a creative mindset, and a passion for working with modern AI/ML systems.

    To succeed in this role, you should have a Bachelor's degree (or equivalent) in computer science, mathematics, or a related field, along with at least three years of relevant experience. You should have a proven ability to design, build, and deploy machine learning models and/or data pipelines, and be proficient in Python with hands-on experience in PySpark or Pandas.

    In addition to technical expertise, we value strong analytical skills, the ability to address data quality issues and optimise model performance, and the willingness to think creatively and independently to solve complex problems. Experience in deploying and managing machine learning models in production environments, knowledge of advanced techniques such as gradient boosting and large-scale text embedding models, and familiarity with tools such as Databricks, Git, CI/CD pipelines, and software testing methodologies are also preferred qualifications.

    If you are ready to join a dynamic and innovative team, apply now and take the next step in your career as a Data Engineer!

    Please note that only successful applicants will be contacted.

    Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you.

    KEYWORDS:

    Python / Data pipelines / Data enrichment / PySpark / Pandas / Machine learning / AI/ML / Model deployment / Data cleaning / Data ingestion / Databricks / Git / CI/CD pipelines / API development / Gradient boosting / Text embedding models / Production ML / Software engineering / Data processing / Analytical models / Data science / Model monitoring / Testing / Deployment techniques / Python / Data pipelines / Data enrichment / PySpark / Pandas / Machine learning / AI/ML / Model deployment / Data cleaning / Data ingestion / Databricks / Git / CI/CD pipelines / API development / Gradient boosting / Text embedding models / Production ML / Software engineering / Data processing / Analytical models / Data science / Model monitoring / Testing / Deployment techniques / Python / Data pipelines / Data enrichment / PySpark / Pandas / Machine learning / AI/ML / Model deployment / Data cleaning / Data ingestion / Databricks / Git / CI/CD pipelines / API development / Gradient boosting / Text embedding models / Production ML / Software engineering / Data processing / Analytical models / Data science / Model monitoring / Testing / Deployment techniques
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.