Data Engineer

Immersum
London
1 month ago
Create job alert

Job Title:Lead Data Engineer (leading a team of 5).

Salary:£130,000 – £150,000 + benefits

Location:West London - Hybrid (3 days p/w in-office)

Tech:AWS, Snowflake, Airflow, DBT, Python


The Company:

Immersum have engaged with a leading PropTech company on a mission to revolutionise how the property sector understands people, places, and data. By combining cutting-edge data science with powerful location intelligence, they help major organisations make smarter, faster decisions. Backed by top-tier investors and growing fast, this is your chance to shape the future of PropTech from the inside.


The Role Requirements:

You’ll take ownership of the design and delivery of scalable, high-performing data pipelines that drive core product features and insights. Sitting at the heart of the engineering and data function, you’ll play a critical role in the company’s continued success. You will also lead a small team of 5 Data Engineers to up skill and lead by example.


What you’ll be doing:

  • Leading the build of reusable, production-grade data flows
  • Designing high-performance data processing and streaming systems
  • Defining best practices in data modelling, integration, and storage
  • Ensuring code quality, performance, and maintainability at scale
  • Collaborating across product, data science, and engineering teams
  • Leading a small team of 5 data engineers


What you’ll bring:

  • Strong leadership experience in data engineering
  • Deep expertise with AWS, Snowflake, Airflow, and DBT
  • A pragmatic, product-first approach to building data systems
  • Excellent communication and stakeholder management skills
  • Solid understanding of agile data development lifecycles


Why Join:

  • Be a key player in a fast-growing, mission-led PropTech scale-up
  • Own greenfield projects and shape the data engineering roadmap
  • Excellent opportunities for career growth
  • Build innovative products that are redefining an entire industry

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.