Data Engineer

Ignite Digital
Reading
3 days ago
Create job alert

Hybrid Reading (12 days per month in the office)
Competitive Salary + Benefits


About the Role

We are looking for a Data Engineer / Analyst to join our growing data team. This is a fantastic opportunity to work on cutting‑edge Azure data solutions, helping to shape and deliver high‑quality, scalable data platforms that drive real business insights.


If you are passionate about data engineering, SQL, and Azure technologies, and want to make a genuine impact in a collaborative environment, this could be the role for you.


What Youll Be Doing

  • Designing, building, and maintaining ETL pipelines using Azure Data Factory, SSIS, and SQL Server
  • Developing and optimising stored procedures and queries for data transformation and integration
  • Building and maintaining data warehouse solutions and dimensional data models
  • Supporting data integration projects and ensuring data quality, accuracy, and consistency
  • Delivering insights through Power BI dashboards and reports
  • Using Python and PowerShell for automation and data manipulation
  • Collaborating with business stakeholders to translate requirements into technical data solutions

What Were Looking For

  • Strong experience with SQL Server (T‑SQL, stored procedures, optimisation)
  • Hands‑on expertise with Azure Data Factory (ADF) and SSIS
  • Solid understanding of data warehousing and dimensional modelling
  • Proven experience building ETL/data integration solutions
  • Exposure to Power BI, Python, and PowerShell is highly desirable
  • Excellent problem‑solving skills with a proactive, can‑do attitude
  • Strong communication skills and ability to work closely with stakeholders

Why Join Us?

  • Flexible hybrid working - only 12 days per month required in the Reading office
  • Opportunity to work with modern Azure data technologies
  • A collaborative, supportive team culture where your ideas are valued
  • Clear pathways for career progression and development
  • Competitive salary and benefits package including 10% bonus, private medical & generous pension

How to Apply

If youre a Data Engineer or Data Analyst with strong SQL, ADF, and SSIS experience, wed love to hear from you!


Equal Opportunities: We are committed to building a diverse and inclusive workplace. All qualified applicants will receive consideration for employment without regard to race, gender, age, disability, or other protected characteristics.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.