Data Engineer

UST
London
2 days ago
Create job alert

This is a proactive pipelining initiative. We are not hiring for this role at the moment; however, we are building a pipeline of strong, qualified candidates. Once the position officially opens, we will reach out to shortlisted professionals to begin the interview process.


Location: London

Work mode: hybrid


About the Role:

We are seeking an experienced Data Engineer with deep expertise in Power BI and enterprise-scale reporting environments. The ideal candidate will be responsible for designing, optimizing, and maintaining high-performance semantic models, delivering end-to-end BI solutions, and supporting distributed reporting across multiple business domains.


Key Responsibilities:


Power BI Development & Engineering

  • Build and optimize Power BI Semantic Models for large datasets (4–5GB+).
  • Develop high-performance dashboards using Power BI Desktop & Power BI Service.
  • Write advanced, performance-optimized DAX following best practices.
  • Leverage Power Query (M) for scalable data ingestion and transformation.
  • Perform deep model optimization using Tabular Editor, DAX Studio, and performance analyzer tools.
  • Apply strong understanding of the Power BI calculation engine and performance tuning techniques.

Data Engineering & Integration

  • Design and implement robust data pipelines from Snowflake, SQL Server, SharePoint, and other enterprise systems.
  • Ensure data accuracy, consistency, and reliability across distributed reporting ecosystems.
  • Conduct data validation, quality checks, and impact assessments for model and logic changes.
  • Develop scalable tabular models and optimized reporting structures

Analytics, Reporting & Governance

  • Manage reporting across multiple teams/domains in a structured, enterprise BI environment.
  • Create clean, intuitive dashboards and wireframes aligned with business needs.
  • Perform unit testing and follow structured change management processes.
  • Support large-scale, multi-entity reporting use cases (preferred).


Required Skills & Experience:


  • 10+ years of experience in BI/Data Engineering roles.
  • Advanced expertise with: Power BI Desktop & Service, Power BI Semantic Models, DAX (advanced, optimized), Power Query (M), SQL (strong proficiency), Tabular Editor & DAX Studio
  • Experience working with large datasets and complex enterprise reporting environments.
  • Strong knowledge of data modeling principles and high-performance tabular architecture.
  • Excellent communication, problem-solving, and attention to detail.


We’re grateful for your interest in joining our team. Kindly note that only applicants whose experience and qualifications most closely align with the role will be contacted for the next steps. Thank you for your understanding.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.