Data Engineer - Databricks

Salford
2 days ago
Create job alert

Databricks Data Engineer: £60,000

I am looking for a data engineer who has experience in Databricks, Azure, SQL, Python and Spark to join a well-established organisation who are currently expanding their data team.

Our client is partnered with both Databricks and Microsoft and they deliver data solutions for a diverse range of clients.

They operate with a hybrid working model, where employees are expected to go to the client site when required on a basis of 2-3 times a month.

Our client has been growing massively, meaning this is a great opportunity to develop professionally and work with top level data engineers.

You will be working directly with clients and work on a variety of different projects in an array of industries.

Requirements:

-Strong Databricks experience as well as Python and SQL

-Azure or AWS experience

Benefits:

-Bonus

-Flexible working

-Annual salary review

-25 days annual leave and bank holidays

-And more!

Contact

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Leading UK Machine Learning Labs and Institutes: Pioneering the Future of AI

Over the past decade, machine learning (ML) has transformed from an academic field into a linchpin of commercial innovation. From personalised product recommendations to healthcare diagnostics, it fuels the algorithms behind every major breakthrough in the digital world. For data-driven enterprises and researchers, the United Kingdom offers a vibrant landscape of top-tier ML labs, academic institutes, and forward-looking industries. If you’re aiming to forge a career in this exciting domain—be it in cutting-edge research, industry applications, or policy-making—this comprehensive guide, written for MachineLearningJobs.co.uk, will walk you through the leading UK machine learning hubs. We’ll delve into the opportunities they present, the latest research challenges they tackle, and the career paths that await those ready to shape the future of AI.

Shadowing and Mentorship in Machine Learning: Gaining Experience Before Your First Full-Time Role

How to Find Mentors, Build Industry Connections, and Hone Your Technical & Soft Skills for a Thriving ML Career Machine learning (ML) is transforming industries at a rapid pace, fuelling breakthroughs in healthcare, finance, e-commerce, manufacturing, cybersecurity, and beyond. As the demand for ML expertise skyrockets, the competition for early-career opportunities has intensified. It’s not enough to complete an online course or a university degree; employers are looking for proven, hands-on experience. So, how do you stand out from the crowd? Two powerful strategies—shadowing and mentorship—can help you bridge the gap between academic theory and industry practice. By learning directly from experienced professionals, you gain practical insights and build the confidence needed to excel in real-world ML roles. In this in-depth guide, we’ll explore why mentorship is crucial, how to find the right mentors (both formally and informally), how to demonstrate your value as a mentee, and the best ways to shadow machine learning practitioners. By the end, you’ll be equipped with the knowledge and tactics to jump-start your career and secure your first full-time ML role.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.