Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Barclays Bank PLC
Glasgow
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Join us to build the next-gen Advanced Data and Analytics Platform. We are looking for a dedicated and experienced Data Engineer with very good ETL/ELT and Data Warehousing skills, to work in a collaborative and friendly team on exciting automation deliveries, on premise and in cloud. As a Data Engineer, you’ll be responsible for the build and delivery of the Ops Analytics Platform across a number of hosting platforms building robust, scalable data pipelines. You will be automating the deployment and maintenance of the Advanced Analytics Platform using the latest and greatest technologies and CI/CD tools such as dbt, GitLab etc. You will also deliver self-service capabilities and automations to enable easy adoption of the Ops Advanced Analytics Platform. Key skills required for this role include:Proficiency in Python and SQL is critical for data manipulation and building data pipelinesAbility to design and maintain robust ETL/ELT processesStrong experience in managing and optimizing data warehouses (e.g., Snowflake, Redshift)Additional skills include:Expertise in cloud platforms such as AWS, Azure, or GCP for modern data solutionsHands-on experience with big data frameworks like Apache Spark or HadoopExperience with tools for pipeline automation and monitoring (e.g., Airflow, Prometheus)You may be assessed on key critical skills relevant for success in role, such as risk and controls, change and transformation, business acumen, strategic thinking and digital and technology, as well as job specific technical skills. The role is based out of our office in Glasgow.Purpose of the roleTo build and maintain the systems that collect, store, process, and analyse data, such as data pipelines, data warehouses and data lakes to ensure that all data is accurate, accessible, and secure. Accountabilities· Build and maintenance of data architectures pipelines that enable the transfer and processing of durable, complete and consistent data.· Design and implementation of data warehoused and data lakes that manage the appropriate data volumes and velocity and adhere to the required security measures.· Development of processing and analysis algorithms fit for the intended data complexity and volumes.· Collaboration with data scientist to build and deploy machine learning models.Analyst Expectations· Will have an impact on the work of related teams within the area.· Partner with other functions and business areas.· Takes responsibility for end results of a team’s operational processing and activities.· Escalate breaches of policies / procedure appropriately.· Take responsibility for embedding new policies/ procedures adopted due to risk mitigation.· Advise and influence decision making within own area of expertise.· Take ownership for managing risk and strengthening controls in relation to the work you own or contribute to. Deliver your work and areas of responsibility in line with relevant rules, regulation and codes of conduct.· Maintain and continually build an understanding of how own sub-function integrates with function, alongside knowledge of the organisations products, services and processes within the function.· Demonstrate understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub-function.· Make evaluative judgements based on the analysis of factual information, paying attention to detail.· Resolve problems by identifying and selecting solutions through the application of acquired technical experience and will be guided by precedents.· Guide and persuade team members and communicate complex / sensitive information.· Act as contact point for stakeholders outside of the immediate function, while building a network of contacts outside team and external to the organisation.All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship – our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset – to Empower, Challenge and Drive – the operating manual for how we behave

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.