Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer CGEMJP00318556

Telford
1 week ago
Create job alert

Role Title: Data Engineer

Duration: 6 month contract

Location: Telford, 2/3 days per week onsite

Rate: up to £483 p/d Umbrella inside IR35

Clearance required: Active SC is Desired but SC Eligible will be considered (you must not have been out of the country for more than 28 consecutive days in the past 5 years)

Role purpose / summary

Demand in the AEOI programme space is expected to increase necessitating the stand-up of an additional team to support continued work on the DPRS regime, and for new work landing with the CARF regime.

This developer role will be primarily working on Talend and Oracle RDS systems, within our existing Talend framework and patterns. Experience of ETL tooling will be needed, preferably Talend but Pentaho/Informatica experience will be transferable. Experience working in Oracle RDS databases will also be required.

All profiles will be reviewed against the required skills and experience. Due to the high number of applications we will only be able to respond to successful applicants in the first instance. We thank you for your interest and the time taken to apply

Related Jobs

View all jobs

Data Engineer CGEMJP00318556

Data Engineer CGEMJP00318556

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.