Data Engineer - active NPPV3 clearance required

Farringdon
3 weeks ago
Create job alert

PLEASE NOTE - That to be considered you must be in possession of active NPPV3 clearance.

THE ROLE

  • To design, implement, and develop robust and scalable data infrastructure that supports advanced analytics and intelligence operations within the police department, enabling data-driven decision-making for crime prevention, investigations, and public safety.

  • This post will work within a 130-strong team of intelligence professionals.

  • Enabling seamless integration and analysis of complex criminological and intelligence data, empowering analysts and investigators to identify crime patterns, predict future incidents, and enhance investigative outcomes.

  • Ensuring the integrity, security, and ethical use of sensitive criminal justice information, adhering to stringent compliance standards and fostering public trust.

  • Drive innovation in data management and analytics, leveraging cutting-edge technologies to enhance the department's ability to respond to evolving crime trends and emerging threats.

  • Empower the department with the tools to transform data into actionable intelligence.

    PRIME RESPONSIBILITIES

  • Design and implement data architectures and data models. This involves creating blueprints for how data is organized, stored, and accessed. It includes defining data schemas, relationships, and flows, ensuring data consistency and efficiency.

  • Build data pipelines to process and analyse intelligence data from various sources to identify relevant threats.

  • Develop data solutions to support the analysis of complex intelligence networks and identify potential criminal activity.

  • Administer and maintain databases, ensuring data availability, integrity, and security. It also involves designing and implementing data warehouses to support analytical reporting and data mining. Implement and enforce data security and compliance measures.

  • Collaborate closely with stakeholders to understand their data requirements and develop customized data solutions.

  • Optimize data infrastructure performance and troubleshoot issues by monitoring system performance, identifying bottlenecks, and implementing solutions to improve efficiency. It also includes diagnosing and resolving technical problems.

  • Manage cloud-based data infrastructure, optimise cost, performance, and scalability.

  • Establish and enforce data governance and quality standards by defining and implementing policies and procedures to ensure data accuracy, consistency, and completeness. It also includes establishing data lineage and metadata management processes.

  • Participate in the development of data strategies and initiatives, identifying opportunities to leverage new technologies, and driving innovation in data management practices.

  • Work closely with data scientists, intelligence analysts, and other stakeholders to understand their data needs and provide effective solutions. It also involves communicating complex technical concepts clearly and concisely.

    SKILLS ATTRIBUTES

  • Proficiency in advanced programming languages used for data engineering tasks, including data manipulation, transformation, and analysis (Python, SQL, etc.).

  • Experience with tools and technologies used to build and manage data pipelines, including message queues, orchestration tools, and data integration platforms (Kafka, Airflow, etc.).

  • Familiarity with cloud-based data services, including storage, compute, and analytics (AWS, Azure).

  • Knowledge of database management systems (relational and NoSQL) and data warehousing concepts and technologies.

  • Understanding of data security principles and compliance requirements, particularly related to sensitive data.

  • Ability to support team members, share knowledge, and foster their professional development.

  • Ability to identify and resolve complex technical problems and analyse data to identify trends and patterns.

  • Ability to communicate technical concepts clearly and concisely and work effectively with stakeholders from diverse backgrounds.

    Mobile Site Contact Us About Partners Terms Privacy Cookies

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!