Data Engineer - active NPPV3 clearance required

Farringdon
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

PLEASE NOTE - That to be considered you must be in possession of active NPPV3 clearance.

THE ROLE

  • To design, implement, and develop robust and scalable data infrastructure that supports advanced analytics and intelligence operations within the police department, enabling data-driven decision-making for crime prevention, investigations, and public safety.

  • This post will work within a 130-strong team of intelligence professionals.

  • Enabling seamless integration and analysis of complex criminological and intelligence data, empowering analysts and investigators to identify crime patterns, predict future incidents, and enhance investigative outcomes.

  • Ensuring the integrity, security, and ethical use of sensitive criminal justice information, adhering to stringent compliance standards and fostering public trust.

  • Drive innovation in data management and analytics, leveraging cutting-edge technologies to enhance the department's ability to respond to evolving crime trends and emerging threats.

  • Empower the department with the tools to transform data into actionable intelligence.

    PRIME RESPONSIBILITIES

  • Design and implement data architectures and data models. This involves creating blueprints for how data is organized, stored, and accessed. It includes defining data schemas, relationships, and flows, ensuring data consistency and efficiency.

  • Build data pipelines to process and analyse intelligence data from various sources to identify relevant threats.

  • Develop data solutions to support the analysis of complex intelligence networks and identify potential criminal activity.

  • Administer and maintain databases, ensuring data availability, integrity, and security. It also involves designing and implementing data warehouses to support analytical reporting and data mining. Implement and enforce data security and compliance measures.

  • Collaborate closely with stakeholders to understand their data requirements and develop customized data solutions.

  • Optimize data infrastructure performance and troubleshoot issues by monitoring system performance, identifying bottlenecks, and implementing solutions to improve efficiency. It also includes diagnosing and resolving technical problems.

  • Manage cloud-based data infrastructure, optimise cost, performance, and scalability.

  • Establish and enforce data governance and quality standards by defining and implementing policies and procedures to ensure data accuracy, consistency, and completeness. It also includes establishing data lineage and metadata management processes.

  • Participate in the development of data strategies and initiatives, identifying opportunities to leverage new technologies, and driving innovation in data management practices.

  • Work closely with data scientists, intelligence analysts, and other stakeholders to understand their data needs and provide effective solutions. It also involves communicating complex technical concepts clearly and concisely.

    SKILLS ATTRIBUTES

  • Proficiency in advanced programming languages used for data engineering tasks, including data manipulation, transformation, and analysis (Python, SQL, etc.).

  • Experience with tools and technologies used to build and manage data pipelines, including message queues, orchestration tools, and data integration platforms (Kafka, Airflow, etc.).

  • Familiarity with cloud-based data services, including storage, compute, and analytics (AWS, Azure).

  • Knowledge of database management systems (relational and NoSQL) and data warehousing concepts and technologies.

  • Understanding of data security principles and compliance requirements, particularly related to sensitive data.

  • Ability to support team members, share knowledge, and foster their professional development.

  • Ability to identify and resolve complex technical problems and analyse data to identify trends and patterns.

  • Ability to communicate technical concepts clearly and concisely and work effectively with stakeholders from diverse backgrounds.

    Mobile Site Contact Us About Partners Terms Privacy Cookies

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.