Data Engineer

Glocomms
City of London
4 days ago
Create job alert

Mid‑Level Data Engineer (Contract)

Start Date: ASAP

Contract Duration: 6 Months

Experience within the Financial Services Industry is a must.

If you're a Data Engineer who enjoys building reliable, scalable data pipelines and wants your work to directly support front‑office decision‑making, this role offers exactly that.

You'll join a data engineering function working closely with investment management and front‑office stakeholders, helping ensure critical financial data is delivered accurately, efficiently and at scale. This role sits at the intersection of technology, data, and the business, and is ideal for someone who enjoys ownership, delivery, and solving real‑world data challenges in a regulated environment.

This is a hands‑on opportunity for a mid‑level engineer who can contribute from day one and take responsibility for production data workflows.

What You'll Be Doing

  • Building and maintaining end‑to‑end data pipelines (ETL/ELT) to support analytics and downstream use cases
  • Developing scalable data solutions using Python, with a focus on maintainability and performance
  • Working with Apache Spark / PySpark to process and transform large datasets
  • Supporting the ingestion, transformation and validation of complex financial data
  • Improving the performance, reliability and resilience of existing data workflows
  • Partnering with engineering, analytics and front‑office teams to understand requirements and deliver trusted data assets
  • Taking ownership of data issues and seeing them through to resolution
  • Contributing ideas that improve data quality, automation, and overall platform efficiency

Skills That Will Help You Succeed

Essential

  • Commercial experience as a Data Engineer at a mid‑level
  • Strong Python development skills
  • Hands‑on experience with Apache Spark / PySpark
  • Solid experience building ETL/ELT pipelines
  • Background within the financial services industry (investment management experience desirable)
  • Comfortable working with production systems in a regulated environment
  • Able to work independently and deliver in a fast‑paced setting

Nice to Have

  • Exposure to Polars
  • Experience optimising Spark workloads
  • Cloud data platform experience across AWS, Azure or GCP

What Makes This Role Appealing

  • You'll work on data that directly supports investment and front‑office functions
  • You'll have ownership of production pipelines, not just isolated tasks
  • You'll collaborate closely with both technical teams and business stakeholders
  • Your work will have clear, visible impact on data quality, reliability and decision‑making
  • You'll join a team that values pragmatic engineering, accountability and continuous improvement

Interested? Get in touch to discuss the role in more detail and what success looks like in the first few months.



Desired Skills and Experience

Required Skills & Experience
* Commercial experience as a Data Engineer (mid level)
* Strong Python skills
* Hands on Apache Spark / PySpark experience
* Experience with ETL/ELT and data extraction
* Background in financial services, ideally investment management
* Comfortable working in a regulated, production environment
Nice to Have
* Exposure to Polars
* Experience optimising Spark workloads
* Cloud data platform experience (AWS, Azure or GCP)

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.