Data Engineer

LA International
Birmingham
6 days ago
Create job alert
Overview

Role Title: Data Engineer


Location: Birmingham


Duration: 31/12/2026


Work setup: 2 days onsite/week


Rate £358 Inside IR35


MUST BE THROUGH UMBRELLA


Role Description

  • Design and implement scalable data pipelines across Bronze, Silver, and Gold layers using AWS services (S3, Redshift, Lambda, Glue).
  • Develop and optimize ETL/ELT workflows leveraging dbt, SQL, and orchestration tools like Airflow for efficient data processing.
  • Ensure data quality, security, and compliance through robust validation, monitoring, and governance practices.
  • Collaborate with architects and analysts to deliver high-performance solutions supporting analytics and regulatory needs.
  • Lead migration initiatives from on-prem to AWS cloud, utilizing tools like AWS SCT and best practices for performance tuning.


  • Skills: SQL, Python, AWS ecosystem (S3, Redshift, Lambda, Glue), dbt, Airflow, data modeling, performance optimization, and leadership in data engineering teams.

Please send your latest CV


Additional Information

LA International is a HMG approved ICT Recruitment and Project Solutions Consultancy, operating globally from the largest single site in the UK as an IT Consultancy or as an Employment Business & Agency depending upon the precise nature of the work. LA International welcomes applications from all sections of the community and from people with diverse experience and backgrounds.


Award Winning LA International, winner of the Recruiter Awards for Excellence, Best IT Recruitment Company, Best Public Sector Recruitment Company and overall Gold Award winner, has now secured The Queen's Award for Enterprise: International Trade, for the second consecutive period.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.