Data Engineer

Youngs Employment Services
London
1 day ago
Create job alert

Data Engineer - Hybrid - London / 2 or 3 days work from home
Circ £55,000 - £70,000 + Excellent Benefits Package
A fantastic opportunity is available for a Data Engineer that enjoys working in a fast paced and collaborative team playing work environment. Our client is a prestigious and successful ecommerce / wholesale business trading all over the globe. They've been expanding at a remarkable pace and as a consequence have transformed their technical landscape with leading edge solutions. Having implemented a new MS Fabric based Data platform, the need is now to scale up and deliver data driven insights and strategies right across the business globally. The Data Engineer will be joining a close knit friendly team that is the hub of our clients global data & analytics operation. The role would suit a mid-level data engineer, or a junior engineer with 2 years experience looking to take the next step up. Previous experience with MS Fabric would be beneficial but is by no means essential. Interested candidates must have experience in a similar role with MS Azure Data Platforms, Synapse, Databricks or other Cloud platforms such as AWS, GCP, Snowfake etc.
Key Responsibilities will include;

  • Design, implement, and optimize end-to-end solutions using Fabric components:
    • o Data Factory (pipelines, orchestration)
    • o Data Engineering (Lakehouse, notebooks, Apache Spark)
    • o Data Warehouse (SQL endpoints, schemas, MPP performance tuning)
    • o Real-Time Analytics (KQL databases, event ingestion)
    • o Manage and enhance OneLake architecture, delta lake tables, security policies, and data governance within Fabric.
    • o Build scalable, reusable data assets and engineering patterns that support analytics, reporting, and machine learning workloads.
  • Collaborate with data scientists, analysts, and other stakeholders to understand data requirements and deliver effective solutions.
  • Troubleshoot and resolve data-related issues in a timely manner.
    Key Experience, Skills and Knowledge:
  • Proven 2 yrs+ experience as a Data Engineer or similar role, with a strong focus on PySpark, SQL, Microsoft Azure Data platforms and Power BI an advantage
  • Proficiency in development languages suitable for intermediate-level data engineers, such as:
    • Python / PySpark: Widely used for data manipulation, analysis, and scripting.
    • SQL: Essential for querying and managing relational databases.
  • Understanding of D365 F&O Data Structures is highly desirable
  • Strong problem-solving skills and attention to detail.
  • Excellent communication and collaboration abilities.
    This is a hybrid role based in Central / West London with the flexibility to work from home 2 or 3 days per week. Salary will be dependent on experience and likely to be in the region of £55,000 - £70,000 + an attractive benefits package including bonus scheme.
    For further information, please send your CV to Wayne Young at Young's Employment Services Ltd. YES are operating as both a recruitment Agency and Recruitment Business

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.