Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Teza Technologies
City of London
4 days ago
Create job alert

Teza Technologies is looking for a Junior Data Engineer to join our data team. Data drives systematic trading and is critical to all aspects of the firm's business.

This is a hands-on position on a small team of data engineers with growth potential, as this team will grow rapidly over the next couple of years. The firm is looking for outstanding technical skills, strong attention to detail, and experience architecting and building data platforms.

Responsibilities
  • Work directly with Portfolio Managers and Quantitative Developers to translate business requirements into technical solutions; be a resource to explain dataset details and nuances.
  • Expand our data warehouse by designing and adding new sources and functionality; improve robustness, speed and scalability of our systems; manage data entitlements
  • Provide innovative data management, analytics and technology input to the team and management.
  • Evaluate new tools and technologies suitable for organizing, querying and streaming large datasets.
  • Design and build automated systems for data cleansing, anomaly detection, monitoring and alerting.
  • Support our production data warehouse as required.
  • Develop and maintain strong vendor relationships aligned with our business objectives.
Basic Requirements
  • Proficiency in Python and Unix/Linux for data manipulation, scripting, and automation.
  • Strong SQL knowledge and familiarity with NoSQL databases (ideally Postgres and MongoDB), including query optimization and performance tuning.
  • Strong understanding of data modeling principles, including both normalization and denormalization techniques.
  • Familiarity with cloud platforms, e.g. AWS or GCP
  • Experience with Git version control, collaborative workflows (e.g., Github), and understanding of CI/CD best practices.
  • Bachelor’s degree in Computer Science, Data Science or related field.
Nice to have Requirements
  • Financial industry internships are a plus.
  • Experience with Java recommended.
  • Experience with on-premises data infrastructure (e.g., Hadoop)
  • Experience with Apache Airflow or similar workflow orchestration tools.
  • An understanding of best practices for data modeling, including data normalization techniques.
  • Master’s degree in Computer Science, Data Science or related field.
Benefits
  • Health, visual and dental insurance
  • Flexible sick time policy


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.