Data Engineer

Lorien
Harrogate
5 days ago
Create job alert

Our client are on an exciting journey to build a modern, scalable cloud data platform that powers insight, innovation and future AI capabilities across the Group. We’re looking for a talented Data Engineer to help shape and deliver that vision.

As a key member of our Group Data Team, you’ll work hand‑in‑hand with technical and business stakeholders to design, build and optimise data products that drive real business value. If you thrive on solving complex data challenges and want to play a pivotal role in a growing data function, we want to hear from you.

  • Partnering with cloud infrastructure and development teams to deliver robust solutions.
  • Working within an established SDLC to ensure quality, consistency and control.
  • Collaborating with analysts and system owners to define data extraction and transformation rules, including interface contracts.
  • Supporting data modelling initiatives and maintaining transformation logic.
  • Building ETL/ELT batch and micro‑batch pipelines.
  • Developing modelled data sources and products in Snowflake for end‑users.
  • Maintaining metadata, enforcing data quality and defining platform standards.
  • Administering the cloud data platform.
  • Designing and implementing real‑time streaming pipelines using AWS Kinesis, Firehose, and Kafka (MSK).

Skills required:

  • Hands‑on experience delivering ETL/ELT pipelines using tools like AWS Glue or FiveTran.
  • Experience with transformation tooling such as dbt.
  • Strong proficiency in SQL and Python.
  • Deep understanding of Snowflake and modern data platform principles.
  • Knowledge of cloud‑based data architectures (lakes, Lakehouses, warehouses).
  • Familiarity with AWS services including S3, DynamoDB, Aurora, RDS, Glue, Athena and EMR.
  • Understanding of Lakehouse storage formats (Parquet, Delta, Iceberg).
  • Working knowledge of data modelling methodologies (Inmon, Kimball).
  • Excellent communication skills and the ability to tailor messages for technical and non‑technical audiences.
  • Strong documentation skills, including LLDS and runbooks.
  • Streaming technologies (Kinesis, Firehose, Kafka, Flink).
  • Infrastructure‑as‑Code tools such as CloudFormation or Terraform.

Candidates must be based within a commutable distance to Harrogate as in office days will be required.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.