Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Winton
City of London
2 days ago
Create job alert
Overview

About Winton
Winton is a research-based investment management company with a specialist focus on statistical and mathematical inference in financial markets. The firm researches and trades quantitative investment strategies, which are implemented systematically via thousands of securities, spanning the world's major liquid asset classes. Founded in 1997 by David Harding, Winton today manages assets for some of the world's largest institutional investors.
We employ ambitious professionals who want to work collaboratively at the leading edge of investment management.
Winton leverages quantitative analysis and cutting-edge technology to identify and capitalize on opportunities across global financial markets. We foster a collaborative and intellectually stimulating environment, bringing together individuals with Mathematics, Physics and Computer Science backgrounds who are passionate about applying rigorous scientific methods to financial challenges. As a fundamentally data-driven business, our success is heavily linked to the acquisition, processing, and analysis of vast datasets. High-quality, well-managed data forms the critical foundation for our quantitative research, strategy development, and automated trading systems.


As a Data Engineer within our Quantitative Platform team, you will play a pivotal role in building and maintaining the data infrastructure that fuels our research and trading strategies. You will be responsible for the end-to-end lifecycle of diverse datasets - including market, fundamental, and alternative sources - ensuring their timely acquisition, rigorous cleaning and validation, efficient storage, and reliable delivery through robust data pipelines. Working closely with quantitative researchers and technologists, you will tackle complex challenges in data quality, normalization, and accessibility, ultimately providing the high-fidelity, readily available data essential for developing and executing sophisticated investment models in a fast-paced environment.


Responsibilities

  • Evaluating, onboarding, and integrating complex data products from diverse vendors, serving as a key technical liaison to ensure data feeds meet our stringent requirements for research and live trading.
  • Designing, implementing, and optimizing robust, production-grade data pipelines to transform raw vendor data into analysis-ready datasets, adhering to software engineering best practices and ensuring seamless consumption by our automated trading systems.
  • Engineering and maintaining sophisticated automated validation frameworks to guarantee the accuracy, timeliness, and integrity of all datasets, directly upholding the quality standards essential for the efficacy of our quantitative strategies.
  • Providing expert operational support for our data pipelines, rapidly diagnosing and resolving critical issues to ensure the uninterrupted flow of high-availability data powering our daily trading activities.
  • Participating actively in team rotations, including on-call schedules, to provide essential coverage and maintain the resilience of our data systems outside of standard business hours.

What we are looking for

  • 5+ years' experience building ETL/ELT pipelines using Python and pandas within a financial environment.
  • Prior experience working with equity data and resolving associated challenges, including cross-reference management across multiple vendors, corporate action handling, and revision workflows
  • Familiarity with various technologies such as S3, Kafka, Airflow, Iceberg
  • Proficiency working with large financial datasets from various vendors.
  • A commitment to engineering excellence and pragmatic technology solutions.
  • A desire to work in an operational role at the heart of a dynamic data-centric enterprise.
  • Excellent communication and collaboration skills, and the ability to work in a team.

What would be advantageous

  • Strong understanding of financial markets.
  • Experience working with hierarchical reference data models.
  • Proven expertise in handling high-throughput, real-time market data streams
  • Familiarity with distributed computing frameworks such as Apache Spark
  • Operational experience supporting real time systems.

Equal Opportunity Workplace

We are proud to be an equal opportunity workplace. We do not discriminate based upon race, religion, color, national origin, sex, sexual orientation, gender identity/expression, age, status as a protected veteran, status as an individual with a disability, or any other applicable legally protected characteristics.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.