Data Engineer

Rise Technical Recruitment
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer Junior to Mid-Level London - 4 Days on-site £40,000 - £65,000 DOE + Equity + Unlimited Annual Leave This is an excellent opportunity for a Junior Data Engineer to join a rapidly growing start-up offering great progression and the chance to further enhance your skills. This company is a platform designed to simplify the hiring process for businesses and enable individuals to find flexible work opportunities. By connecting businesses with skilled professionals for short-term staffing needs, this innovative solution optimises workforce efficiency. In this varied role you will be responsible for building and maintaining scalable data pipelines for data integration into customer-facing mobile and web apps, as well as internal dashboards. Responsibilities include designing and implementing data architecture to optimise data storage, retrieval, and processing, alongside developing ETL processes to ingest, transform, and load data from various sources, particularly APIs. The ideal candidate will possess strong foundations in data architecture with a degree in a relative subject or industry experience. Scalable data solutions, coupled with a solid understanding of data modelling techniques, database design, and data normalisation is required for the role. Equally, proficiency in Python and SQL is essential, ideally with experience using data processing frameworks such as Kafka, NoSQL, Airflow, TensorFlow, or Spark. Finally, experience with cloud platforms like AWS or Azure, including data services such as Apache Airflow, Athena, or SageMaker, is essential for the Mid-level. This is a fantastic opportunity for a Junior Data Engineer to join a rapidly expanding start-up at an important time where you will have great progression opportunities.The Role:Build and maintain scalable data pipelines.Design/implement optimised data architecture.Develop ETL processes for various data sources.Integrate data for apps and dashboards. The Person:Strong data architecture foundation (degree/experience).Scalable data solutions & data modelling expertise.Proficient as a Data Engineer with Python, SQL, and data frameworks.AWS/Azure experience with relevant data services. Reference Number: BBBH(phone number removed)To apply for this role or for to be considered for further roles, please click "Apply Now" or contact Tom McLaughlin at Rise Technical Recruitment This vacancy is being advertised by Rise Technical Recruitment Ltd. The services of Rise Technical Recruitment Ltd are that of an Employment Agency Rise Technical Recruitment Ltd regrets to inform that our client can only accept applications from engineering candidates who have a valid legal permit or right to work in the United Kingdom. Potential candidates who do not have this right or permit, or are pending an application to obtain this right or permit should not apply as your details will not be processed

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.