Data Engineer

Glasgow
1 week ago
Create job alert

Mid-Level Data Engineer (Azure / Databricks)

NO VISA REQUIREMENTS

Location: Glasgow (3+ days)
Reports to: Head of IT
My client is undergoing a major transformation of their entire data landscape-migrating from legacy systems and manual reporting into a modern Azure + Databricks Lakehouse. They are building a secure, automated, enterprise-grade platform powered by Lakeflow Declarative Pipelines, Unity Catalog and Azure Data Factory.
They are looking for a Mid-Level Data Engineer to help deliver high-quality pipelines and curated datasets used across Finance, Operations, Sales, Customer Care and Logistics.

What You'll Do

Lakehouse Engineering (Azure + Databricks)

Build and maintain scalable ELT pipelines using Lakeflow Declarative Pipelines, PySpark and Spark SQL.

Work within a Medallion architecture (Bronze ? Silver ? Gold) to deliver reliable, high-quality datasets.

Ingest data from multiple sources including ChargeBee, legacy operational files, SharePoint, SFTP, SQL, REST and GraphQL APIs using Azure Data Factory and metadata-driven patterns.

Apply data quality and validation rules using Lakeflow Declarative Pipelines expectations.

Curated Layers & Data Modelling

Develop clean and conforming Silver & Gold layers aligned to enterprise subject areas.

Contribute to dimensional modelling (star schemas), harmonisation logic, SCDs and business marts powering Power BI datasets.

Apply governance, lineage and permissioning through Unity Catalog.

Orchestration & Observability

Use Lakeflow Workflows and ADF to orchestrate and optimise ingestion, transformation and scheduled jobs.

Help implement monitoring, alerting, SLAs/SLIs and runbooks to support production reliability.

Assist in performance tuning and cost optimisation.

DevOps & Platform Engineering

Contribute to CI/CD pipelines in Azure DevOps to automate deployment of notebooks, Lakeflow Declarative Pipelines, SQL models and ADF assets.

Support secure deployment patterns using private endpoints, managed identities and Key Vault.

Participate in code reviews and help improve engineering practices.

Collaboration & Delivery

Work with BI and Analytics teams to deliver curated datasets that power dashboards across the business.

Contribute to architectural discussions and the ongoing data platform roadmap.

Tech You'll Use

Databricks: Lakeflow Declarative Pipelines, Lakeflow Workflows, Unity Catalog, Delta Lake

Azure: ADLS Gen2, Data Factory, Event Hubs (optional), Key Vault, private endpoints

Languages: PySpark, Spark SQL, Python, Git

DevOps: Azure DevOps Repos & Pipelines, CI/CD

Analytics: Power BI, Fabric

What We're Looking For

Experience

Commercial and proven data engineering experience.

Hands-on experience delivering solutions on Azure + Databricks.

Strong PySpark and Spark SQL skills within distributed compute environments.

Experience working in a Lakehouse/Medallion architecture with Delta Lake.

Understanding of dimensional modelling (Kimball), including SCD Type 1/2.

Exposure to operational concepts such as monitoring, retries, idempotency and backfills.

Mindset

Keen to grow within a modern Azure Data Platform environment.

Comfortable with Git, CI/CD and modern engineering workflows.

Able to communicate technical concepts clearly to non-technical stakeholders.

Quality-driven, collaborative and proactive.

Nice to Have

Databricks Certified Data Engineer Associate.

Experience with streaming ingestion (Auto Loader, event streams, watermarking).

Subscription/entitlement modelling (e.g., ChargeBee).

Unity Catalog advanced security (RLS, PII governance).

Terraform or Bicep for IaC.

Fabric Semantic Models or Direct Lake optimisation experience.

Why Join?

Opportunity to shape and build a modern enterprise Lakehouse platform.

Hands-on work with Azure, Databricks and leading-edge engineering practices.

Real progression opportunities within a growing data function.

Direct impact across multiple business domains

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.