Data Engineer

Omaze
Edinburgh
4 days ago
Create job alert
THE POSITION

Our roster has an opening with your name on it


We are looking for a Data Engineer to join our growing data engineering team and help build the pipelines and infrastructure that power analytics, machine learning, and business decision‑making across the company. In this role, you’ll contribute to the design, development, and maintenance of reliable data systems while collaborating with stakeholders to support high‑impact data use cases.


The ideal candidate is a strong technical contributor who enjoys working with data at scale, solving practical problems, and continuously learning in a fast‑paced environment. If you’re excited by this challenge and want to work within a dynamic company, then we’d love to hear from you.


THE GAME PLAN

Everyone on our team has a part to play


Build & Maintain Data Pipelines

  • Design, build, and maintain scalable batch and streaming data pipelines to support analytics and business operations.
  • Write clean, efficient, and well‑documented code using tools like Python, SQL, and Spark.
  • Ensure data is reliable, accurate, and delivered in a timely manner.

Collaborate Across Teams

  • Work with data analysts, data scientists, and product managers to understand requirements and deliver actionable data solutions.
  • Translate business questions into engineering tasks and contribute to technical planning.
  • Participate in code reviews, sprint planning, and retrospectives as part of an agile team.

Data Quality & Operations

  • Monitor data pipelines and troubleshoot issues in a timely, systematic manner.
  • Implement data quality checks and contribute to observability and testing practices.
  • Document data sources, transformations, and architecture decisions to support long‑term maintainability.

THE STATS

What we’re looking for in our next teammate



  • Experience in data engineering, analytics engineering, or software engineering with a focus on data.
  • Strong SQL skills and familiarity with at least one programming language (e.g., Python, Java, or Scala).
  • Hands‑on experience with modern data tools such as Databricks, Airflow, DBT, Spark, or Kafka.
  • Understanding of data modeling concepts, data warehousing, and ETL/ELT best practices.
  • Experience working with cloud‑based data platforms (AWS, GCP, or Azure).

Preferred Qualifications

  • Experience supporting BI, analytics, or data science teams.
  • Familiarity with version control, CI/CD, and collaborative development workflows.
  • Exposure to data governance, privacy, or compliance practices.
  • Eagerness to learn new technologies and contribute to the growth of the team.

PLAYER BENEFITS

We treat our team right


From our many opportunities for professional development to our generous insurance and paid leave policies, we’re committed to making sure our employees get as much out of FanDuel as we ask them to give. Competitive compensation is just the beginning. As part of our team, you can expect:



  • An exciting and fun environment committed to driving real growth.
  • Opportunities to build really cool products that fans love.
  • Career and professional development resources to help you refine your game plan for owning and driving your career and development.
  • Be well, save well and live well – with FanDuel Total Rewards your benefits are one highlight reel after another.

ABOUT FANDUEL

FanDuel Group is the premier mobile gaming company in the United States and Canada. FanDuel Group consists of a portfolio of leading brands across mobile wagering including: America’s #1 Sportsbook, FanDuel Sportsbook; its leading iGaming platform, FanDuel Casino; the industry’s unquestioned leader in horse racing and advance‑deposit wagering, FanDuel Racing; and its daily fantasy sports product.


In addition, FanDuel Group operates FanDuel TV, its broadly distributed linear cable television network and FanDuel TV+, its leading direct‑to‑consumer OTT platform. FanDuel Group has a presence across all 50 states, Canada, and Puerto Rico.


The company is based in New York with US offices in Los Angeles, Atlanta, and Jersey City, as well as global offices in Canada and Scotland. The company’s affiliates have offices worldwide, including in Ireland, Portugal, Romania, and Australia.


FanDuel Group is a subsidiary of Flutter Entertainment, the world's largest sports betting and gaming operator with a portfolio of globally recognized brands and traded on the New York Stock Exchange (NYSE: FLUT).


Diversity, Equity and Inclusion

FanDuel is an equal opportunities employer. Diversity and inclusion in FanDuel means that we respect and value everyone as individuals. We don't tolerate bias, judgement or harassment. Our focus is on developing employees so that they reach their full potential.


FanDuel is committed to providing reasonable accommodations for qualified individuals with disabilities. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please email .


The requirements listed in our job descriptions are guidelines, not hard and fast rules. You don’t have to satisfy every requirement or meet every qualification listed. If your skills are transferable and you are in the ballpark experience‑wise, we'd love to speak to you!



#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.