Data Engineer

ANSON MCCADE
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineering Active DV Clearance Required Anson McCade is delighted to be partnering with a world-renowned consultancy as they seek to appoint Data Engineer to their talented organisation. This opportunity provides experienced individuals who are driven by curiosity and a passion for innovation, committed to building the world's leading AI-powered, cloud-native software solutions for our clients customers. With a legacy of success, our client offer global opportunities, providing a welcoming environment for those looking to advance their careers. The Data Engineer will work across product and technology ecosystem spans Research, Software, and Infrastructure, positioning you at the forefront of growth and innovation. The Data Engineer role calls for a highly analytical professional skilled in Python programming, database management, and data methodologies. Your focus will be on extracting insights from data, developing and deploying machine learning models, managing large-scale data infrastructure, and supporting the development of AI-driven products. Key Responsibilities: Data Collection and Preparation: Gather and clean data from various sources to ensure high-quality datasets that support informed decision-making. Data Analysis and Visualization: Analyze and visualize data using advanced methods to uncover patterns, insights, and trends. Statistical Analysis: Use statistical and mathematical techniques to build a solid foundation for predictive modeling. Machine Learning and AI: Design and implement machine learning and deep learning models to solve key business challenges. ML-Ops / AI-Ops: Apply ML-Ops/AI-Ops best practices to streamline model deployment and management. Big Data Management: Oversee big data infrastructure and perform data engineering tasks to ensure efficient data handling and processing. Version Control and Collaboration: Use version control tools like Git to maintain code integrity and promote team collaboration. AI-Powered Product Development: Develop, design, and support AI-based products that provide meaningful solutions aligned with business goals and user needs. Technical Skillset: Develops applications leveraging Big Data technologies, including API development. Should possess a background in traditional Application Development, along with familiarity with analytics libraries, open-source Natural Language Processing (NLP), and statistical and big data computing libraries. Exhibits strong technical skills in understanding, designing, writing, and debugging complex code. AWS (Lambda S3 DynamoDB etc) Cloudformation JavaScript Cypress testing Openshift containers

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.