Data Engineer

NatWest Group
City of London
4 days ago
Create job alert

  • You'll be the voice of our customers, using data to tell their stories and put them at the heart of all decision‑making
  • We'll look to you to drive the build of effortless, digital‑first customer experiences
  • If you're ready for a new challenge and want to make a far‑reaching impact through your work, this could be the opportunity you're looking for

What you’ll do

As a Data Engineer, you’ll be looking to simplify our organisation by developing innovative data‑driven solutions through data pipelines, modelling and ETL design, inspiring to be commercially successful while keeping our customers, and the bank’s data, safe and secure. You’ll drive customer value by understanding complex business problems and requirements to correctly apply the most appropriate and reusable tool to gather and build data solutions. You’ll support our strategic direction by engaging with the data engineering community to deliver opportunities, along with carrying out complex data engineering tasks to build a scalable data architecture.


Responsibilities

  • Building advanced automation of data engineering pipelines through removal of manual stages
  • Embedding new data techniques into our business through role modelling, training, and experiment design oversight
  • Delivering a clear understanding of data platform costs to meet your department’s cost saving and income targets
  • Sourcing new data using the most appropriate tooling for the situation
  • Developing solutions for streaming data ingestion and transformations in line with our streaming strategy

Requirements

  • Strong experience of Snowflake for data warehousing along with writing efficient SQL and managing schemas
  • Proficiency in Airflow for orchestration and workflow management as well as hands‑on experience with AWS services particularly S3 and Lambda
  • Excellent communication skills with the ability to proactively engage and manage a wide range of stakeholders
  • Expert level knowledge of ETL/ELT process along with in-depth knowledge of data warehousing and data modelling capabilities
  • Experience with Kafka concepts like producers, consumers and topics with the ability to integrate with streaming pipelines
  • Proficiency in Python for data engineering and version control systems such as Git
  • Ability to lead technical initiatives along with experience of mentoring junior colleagues
  • Knowledge of Snowflake performance tuning would be hugely beneficial


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.