Data Engineer

Rapid7
Belfast
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer II


Rapid7 seeks a highly motivated and inquisitive aspiring Data Engineer II to join our quickly scaling data engineering function. Come and join our efforts in unlocking the value of data through industry-leading innovation, cutting edge modern tooling, democratization at scale and building exceptional and trusted data products for the company! 

About the Team


As we spearhead a cultural shift to a data-driven business, Data Engineering serves as the Hub for all teams at Rapid7 from ML Ops, to Sales and Operations to Platform and Engineering. Our team is a highly skilled yet egoless group of data magicians (and humorists) with a penchant for innovation and a knack for problem solving. 

About the Role


The Data Engineering practice is growing quickly and we’re investing in a bright, data-focused future. We are seeking an aspiring data engineer to flourish and grow within our team. The ideal candidate has a solid foundational understanding of data engineering and software development concepts and best practices with some hands on experience preferred. Bring your courage, curiosity, problem solving skills, and technical chops!

In this role, you will:

Build and maintain pipelines and infrastructure that ingest, analyze and store Rapid7's enterprise data using modern tools such as Snowflake, Airflow, dbt and AWS

Work closely with senior engineers to drive software lifecycle including hands-on development, testing, deployment, and documentation

Participate in scrum events include sprint planning, retrospectives and daily stand-ups

Productionize data through dev ops processes (such as CICD) using containerization tools such as ECS

Collaborate with stakeholders in product, business and IT to deliver high quality data products and assist with data-related technical issues

Support large scale projects including major implementations, process improvements, and cross-function data initiatives 

The skills you’ll bring include:

BS in Computer Science, Analytics, Statistics, Informatics, Information Systems or 

another quantitative field or equivalent experience; Should have broad knowledge of core computer science / software engineering concepts.

2-3 years of experience in a data-focused required; specifically as a Data Engineer or highly technical Analytics Engineer

SQL fluency and data warehousing understanding required; Working experience with a programming language is highly preferred

Working knowledge with modern data tools such as Snowflake, dbt, Airflow, and AWS

Capable of taking well-defined tasks and completing these tasks with minimal supervision

General understanding of the SDLC including modern dev ops tools, code reviews, testing, and planning

Strong work ethic, resiliency, persistence, and urgency; Data Engineering holds itself to a high standard so you’ll need to keep up!

Sharp business and interpersonal skills; Should be able to effectively communicate status and escalate blockers

Be a team-player! Data Engineering has a nice balance of independent vs codependent - One Moose!



We know that the best ideas and solutions come from multi-dimensional teams. That’s because these teams reflect a variety of backgrounds and professional experiences. If you are excited about this role and feel your experience can make an impact, please don’t be shy - apply today.

 

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.