Data Engineer

Stott and May
Reading
20 hours ago
Create job alert

Job Title: Senior Data Engineer

Location: UK (Hybrid, 2–3 days per week in-office)

Rate: £446/day (Inside IR35)

Contract Duration: 6 months

Additional Requirements: May require occasional travel to Dublin office

Overview

We are looking for an experienced Senior Data Engineer to join a Data & Analytics (DnA) team. You will design, build, and operate production-grade data products across customer, commercial, financial, sales, and broader data domains. This role is hands-on and heavily focused on Databricks-based engineering, data quality, governance, and DevOps-aligned delivery.

You will work closely with the Data Engineering Manager, Product Owner, Data Product Manager, Data Scientists, Head of Data & Analytics, and IT teams to transform business requirements into governed, decision-grade datasets embedded in business processes and trusted for reporting, analytics, and advanced use cases.

Responsibilities
  • Design, build, and maintain pipelines in Databricks using Delta Lake and Delta Live Tables.
  • Implement medallion architectures (Bronze/Silver/Gold) and deliver reusable, discoverable data products.
  • Ensure pipelines meet non-functional requirements such as freshness, latency, completeness, scalability, and cost-efficiency.
  • Own and operate Databricks assets including jobs, notebooks, SQL, and Unity Catalog objects.
  • Apply Git-based DevOps practices, CI/CD, and Databricks Asset Bundles to safely promote changes across environments.
  • Implement monitoring, alerting, runbooks, incident response, and root-cause analysis.
  • Enforce governance and security using Unity Catalog (lineage, classification, ACLs, row/column-level security).
  • Define and maintain data-quality rules, expectations, and SLOs within pipelines.
  • Support root-cause analysis of data anomalies and production issues.
  • Partner with Product Owner, Product Manager, and business stakeholders to translate requirements into functional and non-functional delivery scope.
  • Collaborate with IT platform teams to define data contracts, SLAs, and schema evolution strategies.
  • Produce clear technical documentation (data contracts, source-to-target mappings, release notes).
Qualifications
  • 6+ years in data engineering or advanced analytics engineering roles.
  • Strong hands-on expertise in Python and SQL.
  • Proven experience building production pipelines in Databricks.
  • Excellent attention to detail, with the ability to create effective documentation and process diagrams.
  • Solid understanding of data modelling, performance tuning, and cost optimisation.
Desirable Skills
  • Hands-on experience with Databricks Lakehouse, including Delta Lake and Delta Live Tables for batch/stream pipelines.
  • Knowledge of pipeline health monitoring, SLA/SLO management, and incident response.
  • Unity Catalog governance and security expertise, including lineage, table ACLs, and row/column-level security.
  • Familiarity with Databricks DevOps/DataOps practices (Git-based development, CI/CD, automated testing).
  • Performance and cost optimization strategies for Databricks (autoscaling, Photon/serverless, partitioning, Z-Ordering, OPTIMIZE/VACUUM).
  • Semantic layer and metrics engineering experience for consistent business metrics and self-service analytics.
  • Experience with cloud-native analytics platforms (preferably Azure) operating as enterprise-grade production services.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.