Data Business Analyst - Risk Rating & Pricing

London
4 weeks ago
Create job alert

My client is based in the London area and are currently looking to recruit for an experienced Data/Business Analyst to join their team. They are one of the leaders within the consulting sector, and are currently going through a period of growth and are looking for an experienced BI professional to join their team. They have a vision to continually improve and incrementally adapt to their environments.

Your role will include:

Work closely with key business teams to gather and document requirements relating to risk assessment, pricing data, and associated tools and processes.

Carry out analysis on large and complex datasets to support the design, refinement, and monitoring of pricing models.

Assist with the identification, mapping, and analysis of key data sources and the flow of information between systems.

Help develop materials such as data dictionaries, process maps, and system documentation to promote clarity and consistency in how data is used across the organisation.

Facilitate and document workshops with teams including Underwriting, Actuarial, and Technology to capture business input and define technical requirements.

Collaborate with data engineering teams to support data sourcing, preparation, and quality assurance activities.

Produce reports and dashboards (Power BI) to present insights and inform business decision-making.

Contribute to testing and validation activities for pricing tools, ensuring business needs and data requirements are accurately captured.

Act as a link between Underwriting teams and Technology teams, translating business needs into actionable deliverables.

Support data governance initiatives by contributing to data quality improvement efforts and maintaining documentation standards.

My client is providing access to;

Hybrid 2/3 days,
25 Days Holiday, Plus Bank Holiday
Bonus Scheme
And More...

For this role, they are looking for a candidate that has experience in…

Practical understanding of the London Insurance Market landscape along with exposure to pricing platforms such as Radar, HX, or Verisk Rulebook is essential.

Familiarity with concepts surrounding risk assessment, pricing methodologies, or actuarial workflows would be considered advantageous.

Demonstrated background working in roles such as Data Analyst, Business Analyst, or similar analytical positions.

Strong capability in documenting business needs, creating clear data definitions, and mapping out system-related processes. Experience using tools like Oracle SQL Developer and Microsoft Visio is a plus.

Hands-on experience working with relational database systems, including but not limited to SQL Server, Oracle, MySQL, or PostgreSQL.

This role is an urgent requirement, there are limited interview slots left, if interested send an up to date CV to Shoaib Khan - (url removed) or call (phone number removed) for a catch up in complete confidence.

Frank Group's Data Teams offer more opportunities across the UK than any other recruiter We're the proud sponsor and supporter of SQLBits, AWS RE:Invent, Power Platform World Tour, the London Power BI User Group, Newcastle Power BI User Group and Newcastle Data Platform and Cloud User Group

Related Jobs

View all jobs

Data Business Analyst - Risk Rating & Pricing

Business Data Analyst

Business Data Analyst BELFAST £600/day Banking

Data Science Business Analyst

Data Engineer

Information and Data Governance Lead

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.