Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Architect

Berg Search
Birmingham
7 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer (MS Fabric, Databricks - Legal)

Data Engineer

Sr. Data Engineer

Data Analyst

Cloud Data Engineer

Role Overview


As aData Architect / Data Engineer, Integrations, you will tackle the challenges of building reliable, scalable data pipelines and integrations in complex, enterprise-scale environments. You will design, build, and optimize solutions that handle large-scale, inconsistent, and unstructured data, ensuring clean, structured, and secure data to power intelligent systems. You will also enable cloud-agnostic data storage and processing solutions to support client-specific environments, including multi-cloud, on-premises, or dedicated tenancies. Collaborating closely withResearch Engineers and Research Scientists, you will ensure data is modelled effectively to support advanced retrieval, real-time insights, and AI-enabled decision support.

Key Responsibilities

  • Architect and Build: Design, implement, and optimize scalable data pipelines and architectures to process high-velocity, large-scale data from diverse sources.
  • Integrate Diverse Systems: Develop and maintain integrations across enterprise platforms, project tools, communication systems, and external APIs to enable seamless bi-directional data flow across the organization.
  • Enhance Data Quality: Design processes to validate, transform, and structure inconsistent and unstructured data, ensuring it is clean, reliable, and optimized for downstream use.
  • Collaborate Across Teams: Work closely withResearch Engineers and Research Scientiststo ensure data is structured effectively to support advanced retrieval, query performance, and AI-enabled insights.
  • Leverage Best-in-Class Tools: Build and optimize streaming data pipelines using Azure tools such as Event Hubs, Stream Analytics, and Data Explorer to deliver real-time data insights, risk detection, and proactive alerting.
  • Utilize Cloud Expertise: Leverage Microsoft Azure services for secure, cost-effective, and high-performance data solutions, while enabling cloud-agnostic data processing and storage solutions to meet client-specific requirements, including AWS, GCP, or on-premises environments.
  • Ensure Security and Compliance: Implement role-based access controls, encryption, and logging to ensure data security and compliance with standards such asISO 27001, SOC 2, and GDPR.
  • Drive Efficiency: Identify opportunities to improve data flow, processing times, and cost-effectiveness across the data infrastructure.
  • Stay Current: Keep up to date with emerging trends in cloud platforms, data engineering, and real-time processing technologies to future-proof the infrastructure.


Expertise and Skills


Core Technical Competencies:

  • Cloud Platforms: Expertise in Microsoft Azure (Event Hubs, Stream Analytics, Data Explorer, Synapse) with a strong understanding of AWS, GCP, and the ability to deliver cloud-agnostic and on-premises data solutions.
  • Data Engineering Tools: Experience with Databricks, Apache Spark, or similar frameworks for large-scale data processing.
  • ETL/ELT Pipelines: Proven ability to design and manage scalable data pipelines using tools like Azure Data Factory, dbt, or Apache Airflow.
  • Programming Proficiency: Advanced proficiency in Python and SQL for building and automating data processing workflows.


Data Architecture & Integration:

  • Data Modelling: Experience designing relational, non-relational, and graph-based data models with strong permisioning and access control structures.
  • System Integrations: Familiarity with integrating enterprise tools (e.g., ERP, project management, document stores) and working with APIs or streaming frameworks.
  • Real-Time Processing: Practical experience with streaming technologies likeAzure Event Hubs, Stream Analytics, or other real-time tools.


Security & Compliance:

  • Best Practices: Experience implementing encryption, logging, and role-based access control to align with standards such asISO 27001, SOC 2, and GDPR.
  • Data Governance: Understanding of data lineage, cataloguing, and governance frameworks.


Mindset & Approach:

  • Problem Solver: Thrives on tackling complex data challenges and delivering robust, scalable solutions.
  • Collaborative Partner: Works effectively across teams, particularly withResearch Engineers and Research Scientists, to align data infrastructure with business and technical needs.
  • Detail-Oriented: Committed to ensuring high data quality, security, and performance.
  • Continuous Learner: Eager to explore emerging tools and techniques to push the boundaries of data engineering.


What Success Looks Like


Success in this role will be measured by the robustness and efficiency of our data pipelines, the seamless integration of diverse systems, and the ability to deliver clean, secure, and well-structured data. Your solutions will support client-specific needs, enabling processing and storage across cloud-agnostic, multi-cloud, or on-premises environments. Your work will directly power intelligent, AI-enabled insights and decision-making for enterprise-scale programmes.

What We Offer

  • Competitive salary
  • Bonus scheme
  • Wellness allowance
  • Fully remote working (with regular company get-togethers)
  • Private medical and dental insurance*
  • Life assurance, critical illness cover, and income protection*

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.