Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Architect

Walderslade
7 months ago
Applications closed

Related Jobs

View all jobs

Senior BI Data Engineer

Senior Data Engineer

Technical Architect - Data Science

Senior Data Engineer: Cloud Data Architecture & Pipelines

Head of Data Engineering & Platform Architecture

Data Engineer – Hybrid Azure ETL & Analytics

Data Architect

Our client, a leading financial services corporation, is hiring a Data Architect to drive & design our client's data strategy as they move from on-prem to Azure cloud services. You will be part of a team designing and managing data systems primarily in Azure, ensuring alignment with business goals and requirements. To be successful, you must have strong expertise in Azure-based data solutions working within a regulated environment. Our client is paying a basic salary of £83,000 + 15% bonus to be based in Chatham or Wolverhampton on a hybrid basis.

You will possess experience designing and implementing large-scale data warehousing/data modeling projects as our client rebuilds the IT ecosystem to ensure Data is at the heart of everything they do - a first in our clients history!

Core responsibilities:

Architect and design end-to-end data solutions on-premises and in Azure, ensuring alignment with business goals and requirements.
Provide data architecture support and guidance for new software / solutions
Create robust and scalable data models that meet business needs while following industry best practices.
Work with business analysts, data engineers, and other stakeholders to understand data requirements.
Integrate various data sources (on-premises, cloud-based, and third-party) into the Azure environment.
Utilise Azure services like Azure Data Lake, Azure SQL Database, Azure Synapse Analytics, and Azure Databricks for data storage, transformation, and analysis. 
Core skills and experience:

Previous experience acting as a Data Architect building major data changes within a regulated environment (ideally financial services) is a must-have
Specialist knowledge of SQL Server (2008 to 2019) is a must as our client’s transition to Azure.
Expert-level knowledge in MDM is essential
Strong capabilites in Data modeling are essential.
Experience in Data Cleansing and Data Masking on Azure Cloud is desirable.
Understanding TOGAF with a certification is nice to have

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.