Data Analyst Trainer/Skills Coach- Work From Home

Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Data Analyst Trainer

Data Analyst Placement Programme

Data Analyst Placement Programme

Data Analyst Placement Programme

Data Analyst Placement Programme

Data Analyst Placement Programme

Job Opportunity: Data Analyst Skills Coach
Salary: Up to £60,000 (depending on experience)
Location: Fully Remote
Holiday: 25 days + bank holidays

Join a thriving, multi-award-winning apprenticeship training provider as they continue their rapid growth. This organisation is renowned for delivering high-quality learning experiences and supporting learners on their journey to success. With a strong focus on career progression, a supportive environment, and a commitment to excellence, this is a fantastic opportunity to make an impact.
About the Role

You will be coaching and mentoring learners working towards:
• Level 4 Data Analyst
• Level 5 Data Engineering
• Level 4 Business Analyst

Your primary focus will be on delivering inspiring, high-quality training and coaching to help learners achieve their qualifications and meet apprenticeship standards.

Key Responsibilities
• Deliver Coaching & Training: Provide engaging group and one-on-one sessions tailored to learner needs.
• Mentor Learners: Motivate and support learners to achieve their learning objectives and complete qualifications.
• Functional Skills Support: Assist learners in developing Maths and English skills as needed.
• Target Setting: Establish realistic and challenging goals aligned with learner progress.
• Assessment: Observe, mark, and review learner work to ensure it meets required standards.
• Feedback: Offer constructive, actionable feedback to help learners reach their potential.
• Compliance: Ensure IT systems and documentation adhere to funding and quality requirements.
• End-Point Assessment: Guide learners to successfully complete their EPA.

Essential Skills and Experience
To be considered for this role, you must have:
• Professional Experience:
o Demonstrable experience in a data role, such as Data Analyst or similar.
o Strong knowledge of Level 4 Data Analyst and Level 5 Data Engineering Standards.
o Proven track record in delivering Data Apprenticeship Programmes up to Level 5.
• Technical Skills:
o Advanced proficiency in SQL for querying and managing relational databases.
o Experience with AWS services (e.g., Redshift, Glue, Lambda) and Python programming.
o Knowledge of ETL processes and tools like Informatica, Talend, or Apache Airflow.
o Familiarity with cloud platforms (e.g., AWS, Azure, GCP) and data storage solutions.
o Strong understanding of data structures, security, and management practices.

• Coaching and Assessment:
o Ideally hold an Assessor Qualification (e.g., TAQA, CAVA, A1) or be willing to achieve one.
o Teaching qualification (e.g., PTLLS or Award in Education and Training) desirable or willingness to work towards one.
o Passion for teaching and mentoring learners to achieve their goals.
o Experience in coaching and training Apprenticeship learners to level 5 in Data Training Programmes

If you meet the essential criteria and are passionate about coaching, learning, and data, we’d love to hear from you!
For more information, contact Pertemps Newcastle at (phone number removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.