Data Analyst - Sustainability

Merksworth
2 weeks ago
Create job alert

Founded in 1978, Clark Contracts Ltd is a privately owned main contractor with several operating divisions; Construction, Fit Out, Small Works, Retail, Housing, Maintenance and Manufactured Joinery. We employ over 220 people with offices in the East and West of Scotland.

As a Data Analyst – Sustainability, you will play a key role in collecting, analysing, and reporting on sustainability data across our projects and operations. Your insights will help drive our environmental and sustainability initiatives, ensuring compliance with industry regulations and supporting our journey towards net-zero carbon emissions.

Role & Responsibilities

  • Collect and analyse sustainability-related data, including energy usage, carbon footprint, waste management, and supply chain sustainability.

  • Develop and maintain sustainability performance dashboards and reports.

  • Identify trends and opportunities for improvement in environmental impact reduction.

  • Support the implementation of sustainability strategies and initiatives across the business.

  • Ensure compliance with environmental regulations and industry best practices, particularly in relation to SECR and ESOS.

  • Coordinate improvements within our ESG Strategy.

  • Collaborate with internal teams and external stakeholders to drive sustainable practices.

  • Present findings and recommendations to senior management and project teams.

  • Fully embrace the company’s customers 1st campaign to continually improve the way we deal with our Customers.

    The Candidate

  • Proven experience in data analysis, ideally within sustainability, construction, or a similar industry.

  • Strong proficiency in data analysis tools such as Excel, Power BI, or SQL.

  • Knowledge of sustainability reporting frameworks (e.g., BREEAM, ISO 14001, ESG metrics) is a plus.

  • Excellent analytical and problem-solving skills.

  • Strong communication skills to present data-driven insights effectively.

  • Due to the location of sites, a driving license is essential.

    Why work for us?

    At Clark Contracts Ltd, we offer more than just a job. We are committed to investing in our employees and providing opportunities for personal and professional growth.

  • In addition to a competitive salary (negotiable based on experience), you will benefit from: 33 days annual leave entitlement (This is inclusive of 8 public holidays), with the option to purchase additional holidays.

  • Career progression opportunities

  • Ongoing training and development

  • Contributory personal pension scheme.

  • Access to the company’s Employee Assistance Programme which includes support for both you and your family (conditions apply) as well as a team of Mental Health First Aiders.

  • Cycle to Work Scheme.

  • Group Life Assurance.

  • Critical Illness Income Protection.

  • Company Sick Pay.

  • Enhanced Paternity and Maternity Pay.

  • Eyecare Vouchers

  • Employee volunteering scheme.

  • Additional holidays for long service.

    This is a full time, permanent position and will be based at our head office in Paisley.

    Candidates who apply for this role will have their data stored for the purposes of the recruitment process. The storage of your data complies with The General Data Protection Regulation. Full details of what is stored and how can be found in our Recruitment Privacy Notice which is located on our website

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!