Data Analyst, Product Solutions and Ops

TikTok
London
2 months ago
Applications closed

Related Jobs

View all jobs

Interim Commissions Analyst

Product Data Analyst | Cambridge | Climate Risk

Global Foreign Exchange (FX) Services Sales - Sales Data Analyst

Senior Market Data Analyst - Dry Bulk Freight

Senior Data Analyst, AGI-DS RAMP

Data Analyst

Responsibilities
TikTok is the leading destination for short-form mobile video. At TikTok, our mission is to inspire creativity and bring joy. TikTok's global headquarters are in Los Angeles and Singapore, and its offices include New York, London, Dublin, Paris, Berlin, Dubai, Jakarta, Seoul, and Tokyo.

Why Join Us
Creation is the core of TikTok's purpose. Our platform is built to help imaginations thrive. This is doubly true of the teams that make TikTok possible.
Together, we inspire creativity and bring joy - a mission we all believe in and aim towards achieving every day.
To us, every challenge, no matter how difficult, is an opportunity; to learn, to innovate, and to grow as one team. Status quo? Never. Courage? Always.
At TikTok, we create together and grow together. That's how we drive impact - for ourselves, our company, and the communities we serve.
Join us.

TikTok's Product Solutions & Operations (PSO) team aims to help businesses and brands address their marketing goals through product solutions and also reflecting key insights back to the product teams for product iteration. This role will partner closely with the EUI Strategy and Operations lead to ensure that all projects are completed on time and to the highest standard. This highly organized and efficient professional must be flexible and able to wear multiple hats while working closely with our cross-functional teams and prioritizing the needs of the team.

Key Responsibilities

  1. Responsible for business analysis of TikTok monetization products. Evaluate business health, identify potential risks and major business opportunities from a regional perspective, using statistical analysis, quantitative attribution and other methods.
  2. Participate in business goal setting, key direction decision-making and improve internal management efficiency by integrating various data and information based on comprehensive business logic across products, multiple platforms and multiple business forms.
  3. Design comprehensive metrics framework and execute cadence programs to track milestones, metrics, and goals for key product solutions.
  4. Provide thought leadership on product data requirements and help capture the right level of data early on to drive product adoption.
  5. Collaborate with PM, PMM, sales, strategy team and other roles to deliver business and product analysis with clear conclusions and implementation plans, provide decision-making references for leaders and achieve data-driven business growth.
  6. Provide high-information-density business data insights for leaders and analytical support for day-to-day product-related operational questions.


Qualifications
Minimum Qualifications:

  1. 5+ Years industry experience (preferably in ad tech, agencies, digital marketing) and advanced degree in quantitative discipline (e.g., Statistics, Operations Research, Economics, Computer Science, Mathematics, Physics) or equivalent practical experience.
  2. Fluency in SQL/Hive, R/Python; experience in using data visualization products; knowledge of quantitative attribution methods.
  3. Strong curiosity; sensitive to data; good at extracting insights from data.


Preferred Qualifications:

  1. Commerce industry expertise.
  2. Experience in cross-team cooperation; quickly adapting to complex environments.


TikTok is committed to creating an inclusive space where employees are valued for their skills, experiences, and unique perspectives. Our platform connects people from across the globe and so does our workplace. At TikTok, our mission is to inspire creativity and bring joy. To achieve that goal, we are committed to celebrating our diverse voices and to creating an environment that reflects the many communities we reach. We are passionate about this and hope you are too.Seniority level

Mid-Senior level

Employment type

Full-time

Job function

Information Technology

Industries

Entertainment Providers

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.