Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Analyst, Product Solutions and Ops

TikTok
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Engineer

Lead Content Data Analyst

Lead Content Data Analyst

Data Analyst - United Kingdom (London)

Data Analyst

Responsibilities
TikTok is the leading destination for short-form mobile video. At TikTok, our mission is to inspire creativity and bring joy. TikTok's global headquarters are in Los Angeles and Singapore, and its offices include New York, London, Dublin, Paris, Berlin, Dubai, Jakarta, Seoul, and Tokyo.

Why Join Us
Creation is the core of TikTok's purpose. Our platform is built to help imaginations thrive. This is doubly true of the teams that make TikTok possible.
Together, we inspire creativity and bring joy - a mission we all believe in and aim towards achieving every day.
To us, every challenge, no matter how difficult, is an opportunity; to learn, to innovate, and to grow as one team. Status quo? Never. Courage? Always.
At TikTok, we create together and grow together. That's how we drive impact - for ourselves, our company, and the communities we serve.
Join us.

TikTok's Product Solutions & Operations (PSO) team aims to help businesses and brands address their marketing goals through product solutions and also reflecting key insights back to the product teams for product iteration. This role will partner closely with the EUI Strategy and Operations lead to ensure that all projects are completed on time and to the highest standard. This highly organized and efficient professional must be flexible and able to wear multiple hats while working closely with our cross-functional teams and prioritizing the needs of the team.

Key Responsibilities

  1. Responsible for business analysis of TikTok monetization products. Evaluate business health, identify potential risks and major business opportunities from a regional perspective, using statistical analysis, quantitative attribution and other methods.
  2. Participate in business goal setting, key direction decision-making and improve internal management efficiency by integrating various data and information based on comprehensive business logic across products, multiple platforms and multiple business forms.
  3. Design comprehensive metrics framework and execute cadence programs to track milestones, metrics, and goals for key product solutions.
  4. Provide thought leadership on product data requirements and help capture the right level of data early on to drive product adoption.
  5. Collaborate with PM, PMM, sales, strategy team and other roles to deliver business and product analysis with clear conclusions and implementation plans, provide decision-making references for leaders and achieve data-driven business growth.
  6. Provide high-information-density business data insights for leaders and analytical support for day-to-day product-related operational questions.


Qualifications
Minimum Qualifications:

  1. 5+ Years industry experience (preferably in ad tech, agencies, digital marketing) and advanced degree in quantitative discipline (e.g., Statistics, Operations Research, Economics, Computer Science, Mathematics, Physics) or equivalent practical experience.
  2. Fluency in SQL/Hive, R/Python; experience in using data visualization products; knowledge of quantitative attribution methods.
  3. Strong curiosity; sensitive to data; good at extracting insights from data.


Preferred Qualifications:

  1. Commerce industry expertise.
  2. Experience in cross-team cooperation; quickly adapting to complex environments.


TikTok is committed to creating an inclusive space where employees are valued for their skills, experiences, and unique perspectives. Our platform connects people from across the globe and so does our workplace. At TikTok, our mission is to inspire creativity and bring joy. To achieve that goal, we are committed to celebrating our diverse voices and to creating an environment that reflects the many communities we reach. We are passionate about this and hope you are too.Seniority level

Mid-Senior level

Employment type

Full-time

Job function

Information Technology

Industries

Entertainment Providers


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.