Data Analyst

WEX Europe Services Limited
Manchester
10 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

DATA ANALYST / MANCHESTER / HYBRID/ PERMANENT/ £40,000-£45,000 PLUS BENEFITS

About the Team / Role

WEX Europe Services Ltd are the owner of the Esso Card Fuel Card Portfolio, and with offices across Europe and the US are one of the Europe’s largest providers of fuel cards.

The data Analyst will be responsible for analyzing financial data, forecasting future financial trends, and providing recommendations to improve financial performance. The role involves creating financial models, conducting variance analyses, and preparing reports to assist in decision-making processes across the organization.

This is an exciting opportunity for the successful candidate to make lasting change within the business and be part of the growing the business.

What’s on Offer?

Highly Competitive salary of £40,000-£45,000 (Dependant on experience) Annual company bonus 37.5 hour week- Monday to Friday, no evenings or weekends Hybrid working from our Manchester City Centre office (1-2 days per week) Industry leading pension scheme 25 days holiday plus bank holidays- with the opportunity to purchase additional holidays Life assurance Income protection Discount & Perks platform Employee wellbeing

How you’ll make an impact

Financial Analysis: Analyze financial data to identify trends, opportunities, and risks, ensuring insightful reporting. Budgeting & Forecasting: Assist with the development of annual budgets and quarterly financial forecasts. Variance Analysis: Conduct monthly and quarterly variance analysis between actuals and forecasts/budgets. Financial Modeling: Create detailed financial models to support strategic initiatives, capital investments, and business decisions. Reporting: Prepare Retention and Sales reports, including profit and loss statements, balance sheets, and other performance metrics for management. Business Insights: Provide actionable insights to optimize costs, revenue, and overall financial performance. Data Analysis: Gather, analyze, and interpret financial data to support decision-making. Cross-Functional Collaboration: Partner with departments such as Sales, Operations, and Marketing to monitor budgets and performance. Ad-Hoc Analysis: Support leadership with special projects, financial studies, and operational analyses. Program Management: Mange new workstreams of revenue.

Experience you’ll bring

Ideally educated to degree level or qualified by experience Previous experience and knowledge of working with SQL (essential), Power BI, Informatica and Python Ability to work cross functionally across the business including with key stakeholders and Senior Leadership Team Ability to undertake project work and understand Lean 6 Sigma or Agile. Would be of a strong advantage if applicants have previous experience of working with finance systems such as Card 1, ICFS, AR or payment systems

What’s Next?
If you have the skills and passion to take on this position of DATA ANALYST, then we would love to hear from you. APPLY NOW for immediate consideration.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.