Data Analyst

The Green Recruitment Company
Birmingham
1 week ago
Create job alert

The Green Recruitment Company is working with an Environmental and Sustainability Business that supports and empower their customers journey to net zero through driving major reductions in costs, energy consumption and carbon emissions with their market-leading procurement service, informed advice, and unrivalled engineering expertise.


The Opportunity:

  • The role is ideal for a Data Analyst with a keen interest in the Renewable Energy & Sustainability Sector seeking an opportunity to develop a career path within this sector.
  • The Data Analyst will have an opportunity to be part of The Climate Change Engineering Team in an environment that strongly supports career development.
  • The Data Analyst will be working with UK Energy Suppliers and a wide range of industrial clients to support them in managing their carbon emissions and comply with reporting requirements.


Key Responsibilities

  • Collection of energy, production and sub meter data and the generation of reports necessary to monitor performance against specific energy reduction targets.
  • Maintenance and updating of data collection and reporting spreadsheets, bespoke to individual clients
  • Liaising with CCE Engineers and other teams with respect to ongoing support to clients
  • Ensuring “Letters of Authority” are up to date and available when required.
  • Maintenance of departmental QA checks and audits of records


Role Requirements:

Education: Bachelor’s Degree in Environmental Science, Sustainability, Energy Management, Engineering, Data Science, Statistics, Applied Mathematics or a related field


Experience and Skills Required:

  • The Data Analyst could be a graduate level candidate with about 1-2 years’ Data Analysis experience, working with high volume data, with energy data, carbon reporting, or environmental consultancy (preferable).
  • Proficiency in Microsoft Office, Excel is essential
  • Experience in measurement and verification of energy and carbon measures
  • Experience of measurement systems such as ISO 50001
  • Strong attention to detail while managing workload
  • Excellent communication (verbal and written)


On offer:Salary of £25 500 with an attractive company benefit package, reward scheme for great work done, career development alongside opportunities to volunteer through initiatives that gives back to the community.

Related Jobs

View all jobs

Data analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.