National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Analyst

Opus Recruitment Solutions
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Mid-Level Data Analyst

Hybrid Model - 3 Days


The Company:My client, a growing telecommunications company recently acquired by a private equity firm, is entering an exhilarating phase of expansion and innovation. This is your chance to join a company that's poised to revolutionize the industry!


Key Responsibilities:

  • Develop and implement data analysis strategies to leverage the latest advancements in analytics for innovative solutions.
  • Collaborate with project teams in creating comprehensive data and analytics solutions, including defining data sources, building ETL routines, developing algorithms, testing and training models, and documenting models.
  • Support customer analytics projects, including segmentation and churn analysis, to drive strategic business insights.
  • Optimize propositions for services such as network plans and customer support, ensuring alignment with business goals.
  • Enhance product and service analytics efforts, including network optimization, to maximize business performance.
  • Work with senior leadership to develop and execute detailed plans for solution delivery, ensuring alignment with organizational objectives.
  • Build and maintain strong relationships with business stakeholders, fostering a collaborative environment within the data science and analytics community.


About the Team:The data science and analytics teams at my client's company provide critical analysis for various departments, including Commercial, Marketing, Operations, and Product teams. They are committed to continuous learning and staying up-to-date with the latest developments in data analytics.


What You'll Need:

  • Expertise in advanced analytics, including AI, machine learning, optimization, simulation, predictive analytics, and advanced statistical techniques.
  • Proven experience in developing and implementing data analysis solutions and strategies.
  • Exceptional problem-solving skills with the ability to break down complex problems and identify key performance drivers.
  • Outstanding communication skills to effectively convey data insights to various functions at all levels of the business.
  • Proficiency in core analytical techniques and a proven track record in delivering data science and analytics projects.
  • A degree in decision science, engineering, mathematics, physics, operational research, econometrics, statistics, or another quantitative field.
  • Experience in a data science and analytics role using tools such as SQL, Python, R, Power BI, and Azure.
  • Experience with Databricks and working with large amounts of data.


Ready to innovate in the field of data science and analytics? Apply now and join a team that's shaping the future of telecommunications! ��

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.