Data Analyst

Opus Recruitment Solutions
London
7 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Mid-Level Data Analyst

Hybrid Model - 3 Days


The Company:My client, a growing telecommunications company recently acquired by a private equity firm, is entering an exhilarating phase of expansion and innovation. This is your chance to join a company that's poised to revolutionize the industry!


Key Responsibilities:

  • Develop and implement data analysis strategies to leverage the latest advancements in analytics for innovative solutions.
  • Collaborate with project teams in creating comprehensive data and analytics solutions, including defining data sources, building ETL routines, developing algorithms, testing and training models, and documenting models.
  • Support customer analytics projects, including segmentation and churn analysis, to drive strategic business insights.
  • Optimize propositions for services such as network plans and customer support, ensuring alignment with business goals.
  • Enhance product and service analytics efforts, including network optimization, to maximize business performance.
  • Work with senior leadership to develop and execute detailed plans for solution delivery, ensuring alignment with organizational objectives.
  • Build and maintain strong relationships with business stakeholders, fostering a collaborative environment within the data science and analytics community.


About the Team:The data science and analytics teams at my client's company provide critical analysis for various departments, including Commercial, Marketing, Operations, and Product teams. They are committed to continuous learning and staying up-to-date with the latest developments in data analytics.


What You'll Need:

  • Expertise in advanced analytics, including AI, machine learning, optimization, simulation, predictive analytics, and advanced statistical techniques.
  • Proven experience in developing and implementing data analysis solutions and strategies.
  • Exceptional problem-solving skills with the ability to break down complex problems and identify key performance drivers.
  • Outstanding communication skills to effectively convey data insights to various functions at all levels of the business.
  • Proficiency in core analytical techniques and a proven track record in delivering data science and analytics projects.
  • A degree in decision science, engineering, mathematics, physics, operational research, econometrics, statistics, or another quantitative field.
  • Experience in a data science and analytics role using tools such as SQL, Python, R, Power BI, and Azure.
  • Experience with Databricks and working with large amounts of data.


Ready to innovate in the field of data science and analytics? Apply now and join a team that's shaping the future of telecommunications! ��

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.