Data & AI Solution Architect, Azure, Remote

Manchester Square
1 week ago
Create job alert

Data & AI Architect, Azure AI Services, PaaS, ETL, Data Modelling, Remote

Data & AI Architect / Microsoft Stack / Azure required to work for a fast growing Enterprise business based in Central London. However, this will be a remote role and you may have the odd meeting in London, along with some global travel (all expenses paid).

This role will be working at the forefront of AI and we need this candidate to not only have the Data Architecture experience within a Microsoft Stack environment, but we need you to have done some relevant AI solution designing too. We need you to understand Data, the Data Concepts, Natural Language Intelligence, the Deployment of off the shelf technologies etc. Ultimately, we need you to be passionate about Microsoft Technologies, AI and Data! Read on for more details…

Role responsibilities:

  • Tertiary qualifications in Information Technology, Data Science, AI, or related fields; qualifications in Architecture and Project Management are desirable.

  • A minimum of three (3) years in a senior technical role focused on data and AI, such as technical lead, team lead, or architect.

  • Knowledge of Enterprise Architecture methodologies, such as TOGAF, with a focus on data and AI.

  • Experience in assessing data and AI solutions, particularly in Business Intelligence and Data Analytics.

  • Excellent communication skills to explain data and AI concepts to non-technical audiences. Fluency in English; other languages are a plus.

  • Strong planning and organizational skills, with the ability to communicate across various levels of stakeholders.

  • Self-starter with the ability to prioritize and plan complex data and AI work in a rapidly changing environment.

  • Results-oriented with the ability to deliver data and AI solutions that provide organizational benefits.

  • Strong critical thinker with problem-solving aptitude in data and AI contexts.

  • Team player with experience leading cross-functional teams to deliver data and AI solutions.

  • Ability to develop data and AI architecture designs; experience with Service-Oriented Architectures (SOA) and AI frameworks.

  • Available to work flexible hours, with strong collaboration, communication, and business relationship skills.

  • Expert skill level experience with the following technologies:

    • Azure AI Services

    • Azure PaaS Data Services

    • Object Oriented Analysis and Design

    • CI/CD and source control

    • ETL techniques and principles

    • Data modelling

    • Master Data Management

    • Data Visualization

  • Experienced in building Microsoft AI Services

  • Reporting and analytics solutions in the Microsoft Azure ecosystem

    This is a great opportunity and salary is dependent upon experience. Apply now for more details

Related Jobs

View all jobs

Enterprise Data Architect

Microsoft Fabric Architect - Azure - Data Solutions Architect

Data Architect

▷ Urgent! Solutions Architect

Senior Security Architect

Solution Architect for Growth

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.