Credit Algo Quantitative Analyst, VP

Citi
London
11 months ago
Applications closed

Related Jobs

View all jobs

Credit Risk and Data Analyst

Credit Card ML Data Scientist – Hybrid UK

Credit Card ML Data Scientist (Hybrid)

Credit Risk Data Scientist: Revenue & Debt Analytics

Credit Risk Data Scientist – Portfolio Revenue & Debt Analytics

Credit Risk Data Analyst (SAS) – Collections & Recovery

Citi is looking to hire a Credit Algo Quant to sit within Citi’s European Credit Algorithmic Market Making Business which spans across Single Line Bond Request for Quotes (RFQs), Automated Market Making, Portfolio Trading, Fixed Income ETF Market Making Credit and Rates, as well as Fixed Income ETF Creation Redemption Credit and Rates.

The successful candidate will play a key role in the continued build out of our algorithmic and systematic trading capabilities. He will work with a team of 5+ quantitative analysts, 3 traders and key stakeholders to continue the growth of the business and expansion to EM.

Key Responsibilities

The desk has a start-up culture where idea generation and entrepreneurship are highly valued. If you enjoy continuous learning in a highly dynamic market and taking full ownership for quant, technical, and business aspects, then this role provides a lot of opportunities for you to contribute from the ground up.

Some key responsibilities include:

  • Help design, implement, and maintain the market making algorithms and automated-response systems and further expand to EM.
  • Run statistical analysis and perform back-testing on large datasets.
  • Ad hoc data science and ML/AI projects.
  • Development and maintenance of in-house python and q libraries.
Knowledge/Experience/Skills
  • Most importantly, the candidate should be creative, entrepreneurial, and enjoy taking ownership of a project from start to finish.
  • Candidate should have experience and training in one or more of the following areas: financial engineering, machine learning, portfolio optimization and optimization theory, and/or algo pricing/market making.
  • Strong programming skills in python are required. Proficiency in KDB/q and SQL is a plus.
  • Highly technical role; experience and/or training in data science and statistical modelling are required.
  • The desk is closely integrated between traders, quants, and technologists and provides exposure to all aspects of the business. Business intuition and communication skills must be strong.
  • The candidate must be practically minded.
Qualifications
  • PhD. or M.A./M.S. in a quantitative discipline such as computer science, physics, engineering or financial engineering is required.

Job Family Group:Institutional Trading

Job Family:Quantitative Analysis

Time Type:Full time

Citi is an equal opportunity and affirmative action employer. Qualified applicants will receive consideration without regard to their race, color, religion, sex, sexual orientation, gender identity, national origin, disability, or status as a protected veteran.

Citigroup Inc. and its subsidiaries ("Citi”) invite all qualified interested applicants to apply for career opportunities. If you are a person with a disability and need a reasonable accommodation to use our search tools and/or apply for a career opportunity reviewAccessibility at Citi.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.